OpenCV3 Ref SVM : cv::ml::SVM Class Reference
OpenCV3 Ref SVM : cv::ml::SVM Class Reference
OpenCV2:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main()
{
float labels[4] = { 0, 0, 1, 1 }; //训练标签数据,前两个表示男生,后两个表示女生
Mat labelsMat(3, 1, CV_32FC1, labels);
float trainingData[4][2] = { { 186,80 },{ 185,81 },{ 160,50 },{ 161,48 } }; //训练数据,两个维度,表示身高和体重
Mat trainingDataMat(3, 2, CV_32FC1, trainingData);
CvSVMParams params; //SVM参数
params.svm_type = CvSVM::C_SVC; //SVM类型. 这里用C_SVC
params.kernel_type = CvSVM::LINEAR; //SVM 核类型
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6); //终止条件,最大迭代次数和容许误差
CvSVM SVM;
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);//训练
Mat sampleMat = (Mat_<float>(1, 2) << 184, 79); //测试数据,为一男生
float response = SVM.predict(sampleMat);
if (response == 0)
cout << "Boy" << endl;
else if (response == 1)
cout << "Girl" << endl;
return 0;
}
OpenCV3中的SVM:
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#include <iostream>
using namespace cv;
using namespace cv::ml;
using namespace std;
int main()
{
float labels[4] = { 0, 0, 1, 1 }; //训练标签数据
Mat labels_train(4, 1, CV_32F, labels);
float trainingData[4][2] = { { 186,80 },{ 185,81 },{ 160,50 },{ 161,48 } }; //训练数据,两个维度
Mat data_train(4, 2, CV_32F, trainingData);
Ptr<SVM> svm = SVM::create();
svm->setKernel(cv::ml::SVM::KernelTypes::LINEAR);
svm->setType(cv::ml::SVM::Types::C_SVC);
svm->setTermCriteria(TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON ));
svm->train(data_train, ROW_SAMPLE, labels_train);
//svm->save("SVMmodel"); //存储模型
//Ptr<SVM> svm = StatModel::load<SVM>("SVMmodel"); //读取模型
Mat testData(1,2,CV_32F);//测试数据
Mat responses; //预测结果
testData.at<float>(0,0) = 184;
testData.at<float>(0,1) = 79;
svm->predict(testData, responses);
responses.convertTo(responses,CV_32S);
if (response.at<int>(0,0) == 0)
cout << "Boy" << endl;
else if (response.at<int>(0,0) == 1)
cout << "Girl" << endl;
return 0;
}
---------------------
作者:纯洁可爱小昊昊
来源:CSDN
原文:https://blog.csdn.net/jhszh418762259/article/details/60143152
版权声明:本文为博主原创文章,转载请附上博文链接!
OpenCV3 Ref SVM : cv::ml::SVM Class Reference的更多相关文章
- Unknown/unsupported SVM type in function 'cv::ml::SVMImpl::checkParams'
1.在使用PYTHON[Python 3.6.8]训练样本时报错如下: Traceback (most recent call last): File "I:\Eclipse\Python\ ...
- SVM:从理论到OpenCV实践
(转载请注明出处:http://blog.csdn.net/zhazhiqiang/ 未经允许请勿用于商业用途) 一.理论 参考网友的博客: (1)[理论]支持向量机1: Maximum Marg ...
- 机器学习:SVM(scikit-learn 中的 SVM:LinearSVC)
一.基础理解 Hard Margin SVM 和 Soft Margin SVM 都是解决线性分类问题,无论是线性可分的问题,还是线性不可分的问题: 和 kNN 算法一样,使用 SVM 算法前,要对数 ...
- 机器学习:SVM(目标函数推导:Hard Margin SVM、Soft Margin SVM)
一.Hard Margin SVM SVM 的思想,最终用数学表达出来,就是在优化一个有条件的目标函数: 此为 Hard Margin SVM,一切的前提都是样本类型线性可分: 1)思想 SVM 算法 ...
- Python机器学习笔记:SVM(1)——SVM概述
前言 整理SVM(support vector machine)的笔记是一个非常麻烦的事情,一方面这个东西本来就不好理解,要深入学习需要花费大量的时间和精力,另一方面我本身也是个初学者,整理起来难免思 ...
- 支持向量机(Support Vector Machine,SVM)—— 线性SVM
支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...
- 模式识别之svm()---支持向量机svm 简介1995
转自:http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html 作者:Jasper 出自:http://www.blogjav ...
- [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...
- [Machine Learning & Algorithm]CAML机器学习系列1:深入浅出ML之Regression家族
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号 ...
随机推荐
- RabbitMq学习笔记——MingW编译RabbitMQ C
1.安装cmak,下载地址:https://cmake.org/download/,当前最新版本3.15.1,下载cmake-3.15.1-win64-x64.msi 注意:安装时勾选将bin目录添加 ...
- save the transient instance before flushing错误解决办法
错误原因: new了一个新对象,在未保存之前将它保存进了一个新new的对象(也即不是持久态). 解决办法: 在保存或更新之前把这个对象查出来(这样就是一个持久态) <set name=" ...
- JAVA 集合 List 分组的两种方法
CSDN日报20170219--<程序员的沟通之痛> [技术直播]揭开人工智能神秘的面纱 程序员1月书讯 云端应用征文大赛,秀绝招,赢无人机! JAVA 集合 List 分组的两种方法 2 ...
- 4K对齐
4K对齐这个概念常常与固态硬盘联系起来.买了一块固态硬盘,装机过程中时有忽略4K对齐这个小细节,但是这个小细节往往十分重要,它影响硬盘的使用寿命和速度. 现在来了解一下4K对齐到底是个什么东西. 一. ...
- SciPy 教程
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- jenkins -- 安装、任务构建
一.jenkins是什么? Jenkins是一个开源的.提供友好操作界面的持续集成(CI)工具,起源于Hudson(Hudson是商用的),主要用于持续.自动的构建/测试软件项目.监控外部任务的运行( ...
- 第2节 网站点击流项目(下):6、访客visit分析
0: jdbc:hive2://node03:10000> select * from ods_click_stream_visit limit 2;+--------------------- ...
- windows系统下使用mycat实现mysql数据库的主从复制,从而实现负载均衡
在之前有记录过在一台系统中安装多台数据库,同时实现主从复制,但是那个主从复制只是一个基于dosc命令的,再实际的开发中我们不会去直接连接数据库,一般情况下我们也是通过间接的采用一些中间件去连接,本来是 ...
- android中的简单animation(一)shake
1.shake animation_1.xml: <?xml version="1.0" encoding="utf-8"?> <Linear ...
- sizeof strlen 求char*字符串的长度
sizeof只是求变量所占的字节数,sizeof(char *) = 4字节: strlen(char*) 可以得到整个字符串的长度. 如果是数组vec,那么使用sizeof就可以得到整个数组的所占的 ...