遇到了一个题:

Description:

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states:

Every even integer greater than 2 can be expressed as the sum of two primes.

The actual verification of the Goldbach conjecture shows that even numbers below at least 1e14 can be expressed as a sum of two prime numbers.

Many times, there are more than one way to represent even numbers as two prime numbers.

For example, 18=5+13=7+11, 64=3+61=5+59=11+53=17+47=23+41, etc.

Now this problem is asking you to divide a postive even integer n (2<n<2^63) into two prime numbers.

Although a certain scope of the problem has not been strictly proved the correctness of Goldbach's conjecture, we still hope that you can solve it.

If you find that an even number of Goldbach conjectures are not true, then this question will be wrong, but we would like to congratulate you on solving this math problem that has plagued humanity for hundreds of years.

Input:

The first line of input is a T means the number of the cases.

Next T lines, each line is a postive even integer n (2<n<2^63).

Output:

The output is also T lines, each line is two number we asked for.

T is about 100.

本题答案不唯一,符合要求的答案均正确

样例输入

1
8

样例输出

3 5

题解:预处理1e6范围的素数,暴力这些素数ai 利用素数判定n-ai是否是素数
预处理:线性筛法的模板
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+;
bool check[maxn];
int prime[maxn];
int main(){
int i,j,pos=,flag;
for(i=;i<maxn;i++){
if(!check[i]) prime[pos++]=i;
for(j=;j<pos&&i*prime[j]<maxn;j++){
check[i*prime[j]]=true;
if(i%prime[j]==) break;
}
}

然后就是素数的判断

以下摘录博客:

https://blog.csdn.net/zengaming/article/details/51867240

https://www.cnblogs.com/SinGuLaRiTy2001/p/6591414.html

先说几个理论基础:

1. 费马小定理:假如p是质数,a是整数,且a、p互质,那么a的(p-1)次方除以p的余数恒等于1,即:a^(p-1)≡1(mod p).

但是反过来却不一定成立,就是说,如果a、p互质,且a^(p-1)≡1(mod p),不能推出p是质数,比如Carmichael数。

2. 二次探测定理:如果p是一个素数,0<x<p,则方程x^2≡1(mod p)的解为x=1或x=p-1。

3. 模运算的规则:(a*b)%n=(a%n * b%n)%n

4. 快速积取模、快速幂取模:可以看看我之前写的一篇博客简单快速的算法

这些理论基础还没有好好想过。。

然后是算法的过程:

对于要判断的数n

1.先判断是不是2,是的话就返回true。

2.判断是不是小于2的,或合数,是的话就返回false。

3.令n-1=u*2^t,求出u,t,其中u是奇数。

4.随机取一个a,且1<a<n

/*根据费马小定理,如果a^(n-1)≡1(mod p)那么n就极有可能是素数,如果等式不成立,那肯定不是素数了

因为n-1=u*2^t,所以a^(n-1)=a^(u*2^t)=(a^u)^(2^t)。*/

5.所以我们令x=(a^u)%n

6.然后是t次循环,每次循环都让y=(x*x)%n,x=y,这样t次循环之后x=a^(u*2^t)=a^(n-1)了

7.因为循环的时候y=(x*x)%n,且x肯定是小于n的,正好可以用二次探测定理,

如果(x^2)%n==1,也就是y等于1的时候,假如n是素数,那么x==1||x==n-1,如果x!=1&&x!=n-1,那么n肯定不是素数了,返回false。

8.运行到这里的时候x=a^(n-1),根据费马小定理,x!=1的话,肯定不是素数了,返回false

9.因为Miller-Rabin得到的结果的正确率为 75%,所以要多次循环步骤4~8来提高正确率

10.循环多次之后还没返回,那么n肯定是素数了,返回true

下面是模板:

const ll S = ;
ll mult_mod(ll a, ll b, ll c) {
a %= c;
b %= c;
ll ret = ;
ll tmp = a;
while (b) {
if (b & ) {
ret += tmp;
if (ret > c) ret -= c;
}
tmp <<= ;
if (tmp > c)tmp -= c;
b >>= ;
}
return ret;
}
ll pow_mod(ll a, ll n, ll mod) {
ll ret = ;
ll temp = a % mod;
while (n) {
if (n & )ret = mult_mod(ret, temp, mod);
temp = mult_mod(temp, temp, mod);
n >>= ;
}
return ret;
}
bool check(ll a, ll n, ll x, ll t) {
ll ret = pow_mod(a, x, n);
ll last = ret;
for (ll i = ; i <= t; i++) {
ret = mult_mod(ret, ret, n);
if (ret == && last != && last != n - )return true;
last = ret;
}
if (ret != )return true;
else return false;
}
bool Miller_Rabin(ll n) {
if (n < )return false;
if (n == )return true;
if ((n & ) == )return false;
ll x = n - ;
ll t = ;
while ((x & ) == ) {
x >>= ;
t++;
} srand(time(NULL)); for (ll i = ; i < S; i++) {
ll a = rand() % (n - ) +;
if (check(a, n, x, t))
return false;
}
return true;
}
#include<cstdlib>
#include<ctime>
#include<cstdio>
using namespace std;
const int count=;
int modular_exp(int a,int m,int n)
{
if(m==)
return ;
if(m==)
return (a%n);
long long w=modular_exp(a,m/,n);
w=w*w%n;
if(m&)
w=w*a%n;
return w;
}
bool Miller_Rabin(int n)
{
if(n==)
return true;
for(int i=;i<count;i++)
{
int a=rand()%(n-)+;
if(modular_exp(a,n,n)!=a)
return false;
}
return true;
}
int main()
{
srand(time(NULL));
int n;
scanf("%d",&n);
if(Miller_Rabin(n))
printf("Probably a prime.");
else
printf("A composite.");
printf("\n");
 const ll S = ;
ll mult_mod(ll a, ll b, ll c) {
a %= c;
b %= c;
ll ret = ;
ll tmp = a;
while (b) {
if (b & ) {
ret += tmp;
if (ret > c) ret -= c;
}
tmp <<= ;
if (tmp > c)tmp -= c;
b >>= ;
}
return ret;
}
ll pow_mod(ll a, ll n, ll mod) {
ll ret = ;
ll temp = a % mod;
while (n) {
if (n & )ret = mult_mod(ret, temp, mod);
temp = mult_mod(temp, temp, mod);
n >>= ;
}
return ret;
}
bool check(ll a, ll n, ll x, ll t) {
ll ret = pow_mod(a, x, n);
ll last = ret;
for (ll i = ; i <= t; i++) {
ret = mult_mod(ret, ret, n);
if (ret == && last != && last != n - )return true;
last = ret;
}
if (ret != )return true;
else return false;
}
bool Miller_Rabin(ll n) {
if (n < )return false;
if (n == )return true;
if ((n & ) == )return false;
ll x = n - ;
ll t = ;
while ((x & ) == ) {
x >>= ;
t++;
} srand(time(NULL)); for (ll i = ; i < S; i++) {
ll a = rand() % (n - ) +;
if (check(a, n, x,

Miller-Rabin素数检测算法的更多相关文章

  1. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  2. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  3. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  4. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  5. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  6. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. Miller-Rabin素数检测算法 acm模板

    Miller-Rabin素数检测算法 其基于以下两个定理. Fermat小定理 若n是素数,则∀a(a̸≡0(modn))\forall a(a \not\equiv 0 \pmod{n})∀a(a̸ ...

  8. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  9. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

随机推荐

  1. Java多线程通讯---------wait,notify区别

    class Res{ public String username; public String sex; } class Out extends Thread{ Res res; public Ou ...

  2. Ubuntu使用小技巧汇总

    1. Ubuntu创建/切换root用户 sudo passwd rootsu root 2. 解决Ubuntu14.04系统没有自带右键打开终端的问题 sudo apt-get install na ...

  3. Windbg 实践之符号篇

    How to display the size value 1)一开始不会加载,chksym 了一下就加载了. 2) 新版本已经可以显示size的大小了 3)?? 显示变量的类型 4)x std::v ...

  4. 直击JDD | 京东开启技术服务元年:携手合作伙伴,共创产业未来

    11月19日,主题为"突破与裂变"的2019京东全球科技探索者大会(JDDiscovery)在京盛大开幕.京东集团副总裁黎科峰在JDD主论坛做了题为"技术驱动.开放赋能& ...

  5. 提高js性能的方法

    1.文档瘦身 (1)删除注释(版权及法律声明部分应保留),运行时不需要注释. (2)删除制表符.空格和换行符,这些只是为了便于程序的维护,但是与执行无关. (3)替换长的变量名为短的变量名. (4)使 ...

  6. Java简单调用Lua

    package lua; import org.keplerproject.luajava.LuaState; import org.keplerproject.luajava.LuaStateFac ...

  7. PCB上LED指示灯电流、电压总结

    一般指示灯正常发光的电流在10~20mA,低电流LED灯的工作电流在2mA一下,亮度和普通的一样. 压降                    电流 红色         1.82~1.88V     ...

  8. 增删改查(简单版&连接数据库)

    这个博客也是补充之前的学习内容: 项目总述:这个增删改查我以,选课名称,选课教室,选课教师基本信息,作为主要的信息来源.主要对这些信息最基本的增删改查 详细的分析与说明: 1.首先在src文件里定义四 ...

  9. @Autowired的几个使用细节

    1.使用@Autowired的当前类也必须由spring容器托管(打@Coponent.@Controller.@Service .@repository) 2.不管是public 和  privat ...

  10. idea启动服务连接mysql后 Navicat连接mysql就报错2013-Lost connection toMySQL server at

    我是使用navicat的windows端 连接centos下mysql服务器 第一次常规连接mysql正常,idea启动服务连接mysql后 Navicat连接mysql就报错2013-Lost co ...