参考:

https://blog.csdn.net/zwqjoy/article/details/80493341

https://blog.csdn.net/u012735708/article/details/82769711

执行代码:

# LSTM with Variable Length Input Sequences to One Character Output
import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils
from keras.preprocessing.sequence import pad_sequences
#from theano.tensor.shared_randomstreams import RandomStreams
# fix random seed for reproducibility
numpy.random.seed(7)
# define the raw dataset
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# create mapping of characters to integers (0-25) and the reverse
char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))
# prepare the dataset of input to output pairs encoded as integers
num_inputs = 1000
max_len = 5
dataX = []
dataY = []
for i in range(num_inputs):
    start = numpy.random.randint(len(alphabet)-2)
    end = numpy.random.randint(start, min(start+max_len,len(alphabet)-1))
    sequence_in = alphabet[start:end+1]
    sequence_out = alphabet[end + 1]
    dataX.append([char_to_int[char] for char in sequence_in])
    dataY.append(char_to_int[sequence_out])
    print(sequence_in, '->', sequence_out)
# convert list of lists to array and pad sequences if needed
X = pad_sequences(dataX, maxlen=max_len, dtype='float32')
# reshape X to be [samples, time steps, features]
X = numpy.reshape(X, (X.shape[0], max_len, 1))
# normalize
X = X / float(len(alphabet))
# one hot encode the output variable
y = np_utils.to_categorical(dataY)
# create and fit the model
batch_size = 1
model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], 1)))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=500, batch_size=batch_size, verbose=2)
# summarize performance of the model
scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))
# demonstrate some model predictions
for i in range(20):
    pattern_index = numpy.random.randint(len(dataX))
    pattern = dataX[pattern_index]
    x = pad_sequences([pattern], maxlen=max_len, dtype='float32')
    x = numpy.reshape(x, (1, max_len, 1))
    x = x / float(len(alphabet))
    prediction = model.predict(x, verbose=0)
    index = numpy.argmax(prediction)
    result = int_to_char[index]
    seq_in = [int_to_char[value] for value in pattern]
    print(seq_in, "->", result)

计算机负载:

返回信息:

PQRST -> U
W -> X
O -> P
OPQ -> R
IJKLM -> N
QRSTU -> V
ABCD -> E
X -> Y
GHIJ -> K
M -> N
XY -> Z
QRST -> U
ABC -> D
JKLMN -> O
OP -> Q
XY -> Z
D -> E
T -> U
B -> C
QRSTU -> V
HIJ -> K
JKLM -> N
ABCDE -> F
X -> Y
V -> W
DE -> F
DEFG -> H
BCDE -> F
EFGH -> I
BCDE -> F
FG -> H
RST -> U
TUV -> W
STUV -> W
LMN -> O
P -> Q
MNOP -> Q
JK -> L
MNOP -> Q
OPQRS -> T
UVWXY -> Z
PQRS -> T
D -> E
EFGH -> I
IJK -> L
WX -> Y
STUV -> W
MNOPQ -> R
P -> Q
WXY -> Z
VWX -> Y
V -> W
HI -> J
KLMNO -> P
UV -> W
JKL -> M
ABCDE -> F
WXY -> Z
M -> N
CDEF -> G
KLMNO -> P
RST -> U
RS -> T
W -> X
J -> K
WX -> Y
JKLMN -> O
MN -> O
L -> M
BCDE -> F
TU -> V
MNOPQ -> R
NOPQR -> S
HIJ -> K
JKLM -> N
STUVW -> X
QRST -> U
N -> O
VWXY -> Z
B -> C
UVWX -> Y
OP -> Q
K -> L
C -> D
X -> Y
ST -> U
JKLM -> N
B -> C
QR -> S
RS -> T
VWXY -> Z
S -> T
NOP -> Q
KLMNO -> P
IJ -> K
EF -> G
MNOP -> Q
WXY -> Z
HI -> J
P -> Q
STUVW -> X
Q -> R
MN -> O
O -> P
C -> D
L -> M
JKLM -> N
K -> L
IJKLM -> N
FGHIJ -> K
LM -> N
OPQ -> R
U -> V
HIJKL -> M
PQR -> S
S -> T
OPQR -> S
J -> K
DE -> F
K -> L
BCDE -> F
EFGH -> I
RSTUV -> W
LMNOP -> Q
QR -> S
ABCDE -> F
LM -> N
IJKLM -> N
B -> C
VWX -> Y
MNOPQ -> R
MNOPQ -> R
LM -> N
S -> T
VWX -> Y
WXY -> Z
F -> G
KLMNO -> P
OPQ -> R
M -> N
X -> Y
OPQRS -> T
F -> G
JKLMN -> O
XY -> Z
OPQ -> R
FG -> H
OP -> Q
DEFGH -> I
ABCD -> E
VWX -> Y
U -> V
UV -> W
VWX -> Y
LMNO -> P
E -> F
NOPQ -> R
HIJK -> L
HIJ -> K
DE -> F
B -> C
UVW -> X
STUV -> W
RST -> U
H -> I
I -> J
MN -> O
CDEF -> G
ABC -> D
RSTU -> V
B -> C
JKLM -> N
TUVW -> X
STUVW -> X
C -> D
UV -> W
QRS -> T
ABC -> D
NOP -> Q
W -> X
DE -> F
VWXY -> Z
UV -> W
JK -> L
E -> F
MNO -> P
EFGH -> I
PQRS -> T
FGH -> I
WXY -> Z
OPQRS -> T
TUV -> W
MN -> O
O -> P
LMN -> O
VWX -> Y
QR -> S
TUV -> W
STU -> V
EFGH -> I
E -> F
HIJ -> K
QRS -> T
H -> I
K -> L
E -> F
UV -> W
X -> Y
QR -> S
QRS -> T
WXY -> Z
S -> T
CDEFG -> H
PQRST -> U
RST -> U
A -> B
CDEF -> G
X -> Y
JKLM -> N
VWX -> Y
N -> O
W -> X
TUVW -> X
LMNOP -> Q
EFG -> H
HI -> J
WXY -> Z
IJK -> L
R -> S
H -> I
V -> W
OPQR -> S
QRSTU -> V
MNOPQ -> R
Q -> R
VWXY -> Z
ABCDE -> F
HIJK -> L
FGHIJ -> K
BC -> D
UV -> W
WXY -> Z
VWX -> Y
L -> M
FG -> H
E -> F
WXY -> Z
KLMN -> O
B -> C
QRSTU -> V
X -> Y
ST -> U
GH -> I
CDE -> F
IJKLM -> N
JKL -> M
HIJ -> K
UVWXY -> Z
PQ -> R
AB -> C
HIJ -> K
EFG -> H
PQRS -> T
BCDEF -> G
IJKL -> M
DEFGH -> I
VW -> X
XY -> Z
OPQ -> R
MN -> O
OP -> Q
WXY -> Z
STU -> V
LM -> N
UV -> W
EF -> G
LMN -> O
D -> E
H -> I
KLMNO -> P
PQRST -> U
V -> W
M -> N
UVW -> X
ABCD -> E
LM -> N
A -> B
DEFGH -> I
IJK -> L
OP -> Q
WXY -> Z
CDEFG -> H
UVW -> X
RS -> T
FGHIJ -> K
RST -> U
NO -> P
X -> Y
RST -> U
I -> J
TUV -> W
B -> C
UVWX -> Y
HIJKL -> M
MNOPQ -> R
ABC -> D
PQ -> R
WX -> Y
XY -> Z
UVW -> X
IJKL -> M
XY -> Z
DEFG -> H
H -> I
Q -> R
CDEFG -> H
C -> D
ABCD -> E
LMN -> O
PQRST -> U
VWX -> Y
M -> N
KLMN -> O
AB -> C
NOPQ -> R
F -> G
NO -> P
KLM -> N
TUVWX -> Y
U -> V
CDEFG -> H
FGHI -> J
STUVW -> X
JKLM -> N
ABC -> D
JKLMN -> O
TUVWX -> Y
D -> E
EFGH -> I
IJ -> K
UVW -> X
OPQR -> S
N -> O
VWXY -> Z
ABC -> D
J -> K
RS -> T
LMNOP -> Q
BC -> D
OPQ -> R
JKLM -> N
WX -> Y
BCD -> E
RSTU -> V
GHI -> J
O -> P
R -> S
QR -> S
HIJKL -> M
UVWXY -> Z
CDEFG -> H
OP -> Q
HIJK -> L
A -> B
RST -> U
QR -> S
ABCD -> E
LMN -> O
TUV -> W
MNO -> P
AB -> C
M -> N
OPQR -> S
STU -> V
TUV -> W
PQRST -> U
LM -> N
A -> B
A -> B
OPQ -> R
HIJK -> L
TU -> V
QRS -> T
WX -> Y
BCD -> E
ST -> U
X -> Y
EFGHI -> J
E -> F
FGHIJ -> K
HI -> J
ABC -> D
NOPQ -> R
HIJK -> L
B -> C
U -> V
GH -> I
TUVWX -> Y
S -> T
BCDEF -> G
KLM -> N
Q -> R
CD -> E
PQ -> R
GH -> I
U -> V
RST -> U
JKLM -> N
FGH -> I
IJ -> K
O -> P
X -> Y
H -> I
DEF -> G
QRSTU -> V
ABCD -> E
IJK -> L
GHI -> J
QR -> S
NOPQR -> S
EF -> G
PQRST -> U
RST -> U
X -> Y
QR -> S
HIJ -> K
D -> E
AB -> C
N -> O
QR -> S
BCDEF -> G
QRS -> T
DEF -> G
TUV -> W
A -> B
GHIJ -> K
W -> X
VWXY -> Z
LM -> N
OPQ -> R
XY -> Z
KLM -> N
RST -> U
OP -> Q
VWX -> Y
OPQ -> R
N -> O
M -> N
JKL -> M
OP -> Q
DEF -> G
BCD -> E
K -> L
MN -> O
IJKL -> M
QR -> S
IJKLM -> N
U -> V
FGH -> I
MNOPQ -> R
TUVW -> X
MN -> O
RSTUV -> W
VWX -> Y
Q -> R
DEFGH -> I
NO -> P
T -> U
V -> W
ST -> U
DEFG -> H
RS -> T
NOPQ -> R
GHIJK -> L
QRSTU -> V
LMNO -> P
IJK -> L
PQRST -> U
IJK -> L
DE -> F
CD -> E
JKLM -> N
WX -> Y
UV -> W
W -> X
KLM -> N
PQ -> R
W -> X
WXY -> Z
EFGHI -> J
E -> F
NOP -> Q
VW -> X
EFGHI -> J
NO -> P
HIJKL -> M
UVWXY -> Z
OPQ -> R
P -> Q
H -> I
O -> P
GHIJK -> L
S -> T
E -> F
KLMN -> O
TUVW -> X
E -> F
CDE -> F
I -> J
CDEF -> G
F -> G
ABCD -> E
H -> I
LMNOP -> Q
V -> W
W -> X
BCD -> E
TU -> V
VWXY -> Z
UVWX -> Y
JKL -> M
VW -> X
CDEF -> G
DEF -> G
ABCDE -> F
MNO -> P
EFGH -> I
JKLM -> N
QR -> S
ABCDE -> F
OPQR -> S
DEF -> G
Q -> R
TU -> V
CDEFG -> H
KLMN -> O
VW -> X
HIJKL -> M
DE -> F
OP -> Q
I -> J
GHIJK -> L
HIJKL -> M
I -> J
AB -> C
DE -> F
I -> J
O -> P
HIJK -> L
QR -> S
MN -> O
I -> J
LM -> N
VWXY -> Z
JKLMN -> O
BC -> D
MN -> O
GHIJ -> K
KL -> M
TU -> V
QRST -> U
ABCDE -> F
GH -> I
Q -> R
NO -> P
RST -> U
BCDE -> F
T -> U
TUV -> W
FGHIJ -> K
T -> U
BCD -> E
NO -> P
JK -> L
BCD -> E
G -> H
A -> B
GHIJK -> L
QRSTU -> V
AB -> C
VW -> X
HIJKL -> M
FGHIJ -> K
PQ -> R
UV -> W
F -> G
A -> B
Q -> R
MNOP -> Q
UVWXY -> Z
GHIJK -> L
GHIJK -> L
BCDE -> F
QRS -> T
PQRS -> T
PQ -> R
HI -> J
PQRST -> U
OPQR -> S
QRST -> U
IJKLM -> N
Q -> R
F -> G
QRST -> U
ST -> U
MN -> O
CD -> E
EFG -> H
FGH -> I
R -> S
C -> D
RSTUV -> W
KL -> M
HIJK -> L
CD -> E
FGHI -> J
VW -> X
P -> Q
C -> D
DE -> F
DE -> F
I -> J
LMNOP -> Q
KLMNO -> P
QRS -> T
F -> G
UVWXY -> Z
QRS -> T
BCD -> E
FG -> H
ABCDE -> F
U -> V
M -> N
KLMN -> O
RST -> U
UVWX -> Y
X -> Y
XY -> Z
I -> J
KLMN -> O
X -> Y
W -> X
RSTUV -> W
VW -> X
XY -> Z
T -> U
CDE -> F
FGHI -> J
PQ -> R
OPQRS -> T
D -> E
E -> F
EFGH -> I
GHIJK -> L
L -> M
KLMN -> O
STU -> V
EF -> G
UV -> W
K -> L
QRS -> T
QRSTU -> V
DEF -> G
UV -> W
D -> E
BC -> D
OPQRS -> T
EFGH -> I
QRST -> U
EF -> G
RST -> U
JKL -> M
STU -> V
UVWX -> Y
EFGHI -> J
JKLMN -> O
P -> Q
BCD -> E
TU -> V
O -> P
RST -> U
D -> E
VWXY -> Z
R -> S
P -> Q
CDE -> F
X -> Y
UVWXY -> Z
DEFGH -> I
NOP -> Q
ABCD -> E
B -> C
BC -> D
VW -> X
E -> F
TUVW -> X
JKL -> M
XY -> Z
LM -> N
PQRS -> T
O -> P
KLMN -> O
STUV -> W
K -> L
UVWX -> Y
U -> V
HIJ -> K
W -> X
VWXY -> Z
WX -> Y
HIJ -> K
O -> P
QR -> S
VWXY -> Z
CD -> E
KL -> M
DEFGH -> I
LMN -> O
QRS -> T
JKLMN -> O
QR -> S
CD -> E
QRST -> U
BCDEF -> G
CDE -> F
LMN -> O
DEF -> G
BCD -> E
UV -> W
STUVW -> X
RS -> T
ABCD -> E
BCDEF -> G
Q -> R
UVWXY -> Z
VW -> X
VW -> X
WXY -> Z
NOPQR -> S
V -> W
LM -> N
B -> C
JKL -> M
DE -> F
K -> L
ABC -> D
E -> F
STU -> V
TU -> V
G -> H
AB -> C
J -> K
FGH -> I
MNOP -> Q
VW -> X
CD -> E
TUVWX -> Y
F -> G
VWX -> Y
LMNO -> P
GHIJ -> K
TUVWX -> Y
JKL -> M
LM -> N
EFGHI -> J
MNO -> P
H -> I
M -> N
S -> T
STU -> V
QRST -> U
PQR -> S
RSTUV -> W
ST -> U
RSTUV -> W
JKLM -> N
T -> U
CDE -> F
HIJ -> K
NOPQ -> R
OPQ -> R
EF -> G
AB -> C
CD -> E
RST -> U
STU -> V
L -> M
WXY -> Z
STUVW -> X
QRST -> U
W -> X
S -> T
M -> N
GH -> I
QRST -> U
FGH -> I
PQRS -> T
GH -> I
DE -> F
DE -> F
GHIJK -> L
Q -> R
WX -> Y
WX -> Y
KLM -> N
DE -> F
EF -> G
UVW -> X
IJK -> L
NO -> P
QR -> S
TU -> V
RST -> U
VW -> X
A -> B
DE -> F
WXY -> Z
CD -> E
IJK -> L
STUV -> W
LMNOP -> Q
X -> Y
FGH -> I
F -> G
IJK -> L
EFG -> H
DEFG -> H
NOP -> Q
FG -> H
RSTU -> V
E -> F
WXY -> Z
GH -> I
CD -> E
IJ -> K
TUVWX -> Y
EFGH -> I
DEFGH -> I
BCDE -> F
STUV -> W
HI -> J
GH -> I
STUVW -> X
ABC -> D
S -> T
LMNOP -> Q
UVWX -> Y
PQ -> R
CDEF -> G
E -> F
TU -> V
TUVWX -> Y
GHIJ -> K
JK -> L
IJK -> L
G -> H
EFG -> H
TU -> V
FGHI -> J
W -> X
T -> U
CDE -> F
XY -> Z
XY -> Z
CDE -> F
N -> O
QRST -> U
FGHIJ -> K
PQ -> R
I -> J
GH -> I
F -> G
VWX -> Y
ABC -> D
GH -> I
KLMN -> O
X -> Y
Q -> R
NOPQR -> S
HIJ -> K
IJ -> K
C -> D
FG -> H
JKLMN -> O
TU -> V
NOPQR -> S
O -> P
TU -> V
MNOPQ -> R
PQ -> R
S -> T
VWXY -> Z
VWXY -> Z
CD -> E
BCDEF -> G
OPQ -> R
LMNO -> P
HIJKL -> M
STU -> V
GHI -> J
UVWX -> Y
NOPQ -> R
HIJK -> L
NOP -> Q
Q -> R
HIJ -> K
W -> X
QR -> S
UVWX -> Y
H -> I
ABC -> D
RSTUV -> W
VW -> X
OP -> Q
RSTUV -> W
ABC -> D
ABC -> D
GHIJ -> K
WXY -> Z
BCDE -> F
N -> O
JK -> L
X -> Y
TUV -> W
L -> M
F -> G
MN -> O
JKLMN -> O
G -> H
BCDEF -> G
LMN -> O
N -> O
V -> W
BCDEF -> G
KLM -> N
ST -> U
TUV -> W
MN -> O
JKLM -> N
LM -> N
U -> V
FGH -> I
TUV -> W
C -> D
HIJK -> L
UVWX -> Y
W -> X
QR -> S
PQR -> S
STUVW -> X
RSTU -> V
TU -> V
RSTU -> V
JKL -> M
JKL -> M
RSTUV -> W
GHI -> J
V -> W
CD -> E
QRSTU -> V
M -> N
BCDE -> F
WX -> Y
K -> L
VW -> X
GHI -> J
CD -> E
XY -> Z
HI -> J
C -> D
IJK -> L
DEFG -> H
UV -> W
LM -> N
X -> Y
UV -> W
I -> J
NO -> P
ABCD -> E
K -> L
IJK -> L
JKL -> M
EFGHI -> J
JK -> L
TU -> V
IJ -> K
MNOPQ -> R
C -> D
IJKLM -> N
VW -> X
CDE -> F
E -> F
NOP -> Q
OPQRS -> T
FGHI -> J
STUV -> W
IJKLM -> N
STUV -> W
TUVWX -> Y
RSTU -> V
WARNING:tensorflow:From D:\ProgramData\Anaconda2\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From D:\ProgramData\Anaconda2\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/500
 - 9s - loss: 3.0781 - acc: 0.0650
Epoch 2/500
 - 3s - loss: 2.7666 - acc: 0.1290
Epoch 3/500
 - 3s - loss: 2.4376 - acc: 0.1960
Epoch 4/500
 - 3s - loss: 2.2114 - acc: 0.2600
Epoch 5/500
 - 3s - loss: 2.0611 - acc: 0.3090
Epoch 6/500
 - 3s - loss: 1.9384 - acc: 0.3260
Epoch 7/500
 - 3s - loss: 1.8378 - acc: 0.3500
Epoch 8/500
 - 3s - loss: 1.7537 - acc: 0.3770
Epoch 9/500
 - 3s - loss: 1.6735 - acc: 0.4190
Epoch 10/500
 - 3s - loss: 1.5981 - acc: 0.4460
Epoch 11/500
 - 3s - loss: 1.5255 - acc: 0.4730
Epoch 12/500
 - 4s - loss: 1.4643 - acc: 0.4910
Epoch 13/500
 - 4s - loss: 1.4142 - acc: 0.5070
Epoch 14/500
 - 4s - loss: 1.3573 - acc: 0.5460
Epoch 15/500
 - 4s - loss: 1.3121 - acc: 0.5620
Epoch 16/500
 - 3s - loss: 1.2643 - acc: 0.5930
Epoch 17/500
 - 3s - loss: 1.2226 - acc: 0.5820
Epoch 18/500
 - 3s - loss: 1.1888 - acc: 0.6170
Epoch 19/500
 - 3s - loss: 1.1384 - acc: 0.6270
Epoch 20/500
 - 3s - loss: 1.1160 - acc: 0.6350
Epoch 21/500
 - 3s - loss: 1.0754 - acc: 0.6610
Epoch 22/500
 - 3s - loss: 1.0556 - acc: 0.6750
Epoch 23/500
 - 3s - loss: 1.0104 - acc: 0.6970
Epoch 24/500
 - 3s - loss: 0.9917 - acc: 0.6960
Epoch 25/500
 - 3s - loss: 0.9545 - acc: 0.7020
Epoch 26/500
 - 3s - loss: 0.9278 - acc: 0.7200
Epoch 27/500
 - 3s - loss: 0.9093 - acc: 0.7140
Epoch 28/500
 - 3s - loss: 0.8757 - acc: 0.7470
Epoch 29/500
 - 3s - loss: 0.8721 - acc: 0.7370
Epoch 30/500
 - 3s - loss: 0.8410 - acc: 0.7390
Epoch 31/500
 - 3s - loss: 0.8259 - acc: 0.7570
Epoch 32/500
 - 3s - loss: 0.7960 - acc: 0.7680
Epoch 33/500
 - 3s - loss: 0.7942 - acc: 0.7600
Epoch 34/500
 - 3s - loss: 0.7730 - acc: 0.7720
Epoch 35/500
 - 4s - loss: 0.7593 - acc: 0.7810
Epoch 36/500
 - 4s - loss: 0.7565 - acc: 0.7600
Epoch 37/500
 - 4s - loss: 0.7247 - acc: 0.7900
Epoch 38/500
 - 3s - loss: 0.7106 - acc: 0.7820
Epoch 39/500
 - 3s - loss: 0.7050 - acc: 0.8000
Epoch 40/500
 - 3s - loss: 0.6787 - acc: 0.8020
Epoch 41/500
 - 3s - loss: 0.6763 - acc: 0.7950
Epoch 42/500
 - 3s - loss: 0.6649 - acc: 0.8020
Epoch 43/500
 - 3s - loss: 0.6583 - acc: 0.8020
Epoch 44/500
 - 3s - loss: 0.6298 - acc: 0.8070
Epoch 45/500
 - 3s - loss: 0.6531 - acc: 0.8010
Epoch 46/500
 - 3s - loss: 0.6218 - acc: 0.8120
Epoch 47/500
 - 3s - loss: 0.6079 - acc: 0.8110
Epoch 48/500
 - 3s - loss: 0.6102 - acc: 0.8020
Epoch 49/500
 - 3s - loss: 0.5851 - acc: 0.8220
Epoch 50/500
 - 3s - loss: 0.5927 - acc: 0.8200
Epoch 51/500
 - 3s - loss: 0.5945 - acc: 0.8210
Epoch 52/500
 - 3s - loss: 0.5570 - acc: 0.8350
Epoch 53/500
 - 3s - loss: 0.5888 - acc: 0.8030
Epoch 54/500
 - 3s - loss: 0.5421 - acc: 0.8410
Epoch 55/500
 - 3s - loss: 0.5411 - acc: 0.8320
Epoch 56/500
 - 3s - loss: 0.5603 - acc: 0.8230
Epoch 57/500
 - 3s - loss: 0.5483 - acc: 0.8260
Epoch 58/500
 - 4s - loss: 0.5349 - acc: 0.8280
Epoch 59/500
 - 3s - loss: 0.5219 - acc: 0.8310
Epoch 60/500
 - 3s - loss: 0.5172 - acc: 0.8340
Epoch 61/500
 - 3s - loss: 0.5028 - acc: 0.8340
Epoch 62/500
 - 3s - loss: 0.5017 - acc: 0.8380
Epoch 63/500
 - 3s - loss: 0.5034 - acc: 0.8390
Epoch 64/500
 - 3s - loss: 0.4910 - acc: 0.8450
Epoch 65/500
 - 3s - loss: 0.5269 - acc: 0.8210
Epoch 66/500
 - 3s - loss: 0.4642 - acc: 0.8530
Epoch 67/500
 - 3s - loss: 0.5172 - acc: 0.8370
Epoch 68/500
 - 3s - loss: 0.4531 - acc: 0.8660
Epoch 69/500
 - 3s - loss: 0.5000 - acc: 0.8370
Epoch 70/500
 - 3s - loss: 0.5373 - acc: 0.8260
Epoch 71/500
 - 3s - loss: 0.4472 - acc: 0.8550
Epoch 72/500
 - 3s - loss: 0.5311 - acc: 0.8280
Epoch 73/500
 - 3s - loss: 0.4371 - acc: 0.8690
Epoch 74/500
 - 3s - loss: 0.4926 - acc: 0.8350
Epoch 75/500
 - 3s - loss: 0.4285 - acc: 0.8670
Epoch 76/500
 - 3s - loss: 0.4768 - acc: 0.8520
Epoch 77/500
 - 3s - loss: 0.4311 - acc: 0.8620
Epoch 78/500
 - 3s - loss: 0.4322 - acc: 0.8650
Epoch 79/500
 - 3s - loss: 0.5357 - acc: 0.8380
Epoch 80/500
 - 3s - loss: 0.4184 - acc: 0.8670
Epoch 81/500
 - 3s - loss: 0.4085 - acc: 0.8730
Epoch 82/500
 - 4s - loss: 0.4627 - acc: 0.8370
Epoch 83/500
 - 3s - loss: 0.4059 - acc: 0.8700
Epoch 84/500
 - 3s - loss: 0.4182 - acc: 0.8670
Epoch 85/500
 - 3s - loss: 0.4629 - acc: 0.8500
Epoch 86/500
 - 3s - loss: 0.3936 - acc: 0.8820
Epoch 87/500
 - 3s - loss: 0.4025 - acc: 0.8710
Epoch 88/500
 - 3s - loss: 0.5675 - acc: 0.8220
Epoch 89/500
 - 3s - loss: 0.3839 - acc: 0.8870
Epoch 90/500
 - 3s - loss: 0.4039 - acc: 0.8680
Epoch 91/500
 - 4s - loss: 0.3824 - acc: 0.8800
Epoch 92/500
 - 4s - loss: 0.4262 - acc: 0.8690
Epoch 93/500
 - 3s - loss: 0.3921 - acc: 0.8740
Epoch 94/500
 - 3s - loss: 0.4030 - acc: 0.8640
Epoch 95/500
 - 3s - loss: 0.4341 - acc: 0.8590
Epoch 96/500
 - 3s - loss: 0.3719 - acc: 0.8750
Epoch 97/500
 - 3s - loss: 0.3691 - acc: 0.8930
Epoch 98/500
 - 4s - loss: 0.4230 - acc: 0.8660
Epoch 99/500
 - 3s - loss: 0.3698 - acc: 0.8880
Epoch 100/500
 - 3s - loss: 0.3844 - acc: 0.8660
Epoch 101/500
 - 4s - loss: 0.3587 - acc: 0.8930
Epoch 102/500
 - 3s - loss: 0.4414 - acc: 0.8510
Epoch 103/500
 - 3s - loss: 0.3495 - acc: 0.8960
Epoch 104/500
 - 3s - loss: 0.3540 - acc: 0.8960
Epoch 105/500
 - 3s - loss: 0.4096 - acc: 0.8680
Epoch 106/500
 - 3s - loss: 0.3348 - acc: 0.9050
Epoch 107/500
 - 3s - loss: 0.3886 - acc: 0.8770
Epoch 108/500
 - 3s - loss: 0.3495 - acc: 0.8920
Epoch 109/500
 - 3s - loss: 0.3502 - acc: 0.8820
Epoch 110/500
 - 3s - loss: 0.3518 - acc: 0.8830
Epoch 111/500
 - 3s - loss: 0.3422 - acc: 0.9020
Epoch 112/500
 - 3s - loss: 0.3941 - acc: 0.8750
Epoch 113/500
 - 3s - loss: 0.3284 - acc: 0.8990
Epoch 114/500
 - 3s - loss: 0.4013 - acc: 0.8780
Epoch 115/500
 - 3s - loss: 0.3271 - acc: 0.8930
Epoch 116/500
 - 3s - loss: 0.3283 - acc: 0.9060
Epoch 117/500
 - 3s - loss: 0.3310 - acc: 0.8980
Epoch 118/500
 - 3s - loss: 0.3545 - acc: 0.8930
Epoch 119/500
 - 3s - loss: 0.3286 - acc: 0.8990
Epoch 120/500
 - 3s - loss: 0.4055 - acc: 0.8860
Epoch 121/500
 - 3s - loss: 0.3115 - acc: 0.9070
Epoch 122/500
 - 3s - loss: 0.3295 - acc: 0.8980
Epoch 123/500
 - 3s - loss: 0.3251 - acc: 0.8960
Epoch 124/500
 - 3s - loss: 0.3277 - acc: 0.8970
Epoch 125/500
 - 3s - loss: 0.3203 - acc: 0.9030
Epoch 126/500
 - 3s - loss: 0.4080 - acc: 0.8730
Epoch 127/500
 - 3s - loss: 0.3029 - acc: 0.9210
Epoch 128/500
 - 4s - loss: 0.3096 - acc: 0.9020
Epoch 129/500
 - 4s - loss: 0.3590 - acc: 0.8970
Epoch 130/500
 - 3s - loss: 0.3287 - acc: 0.8860
Epoch 131/500
 - 3s - loss: 0.3055 - acc: 0.9150
Epoch 132/500
 - 4s - loss: 0.2978 - acc: 0.9130
Epoch 133/500
 - 3s - loss: 0.4783 - acc: 0.8530
Epoch 134/500
 - 3s - loss: 0.2938 - acc: 0.9220
Epoch 135/500
 - 3s - loss: 0.2980 - acc: 0.9110
Epoch 136/500
 - 3s - loss: 0.3000 - acc: 0.9120
Epoch 137/500
 - 3s - loss: 0.3878 - acc: 0.8780
Epoch 138/500
 - 3s - loss: 0.2945 - acc: 0.9140
Epoch 139/500
 - 3s - loss: 0.2912 - acc: 0.9150
Epoch 140/500
 - 3s - loss: 0.2923 - acc: 0.9090
Epoch 141/500
 - 3s - loss: 0.2976 - acc: 0.9080
Epoch 142/500
 - 4s - loss: 0.4001 - acc: 0.8780
Epoch 143/500
 - 3s - loss: 0.2775 - acc: 0.9240
Epoch 144/500
 - 3s - loss: 0.2815 - acc: 0.9190
Epoch 145/500
 - 3s - loss: 0.3169 - acc: 0.9050
Epoch 146/500
 - 3s - loss: 0.2904 - acc: 0.9090
Epoch 147/500
 - 3s - loss: 0.2819 - acc: 0.9160
Epoch 148/500
 - 3s - loss: 0.3496 - acc: 0.8870
Epoch 149/500
 - 3s - loss: 0.2770 - acc: 0.9180
Epoch 150/500
 - 3s - loss: 0.2727 - acc: 0.9180
Epoch 151/500
 - 3s - loss: 0.3157 - acc: 0.8900
Epoch 152/500
 - 3s - loss: 0.2723 - acc: 0.9210
Epoch 153/500
 - 3s - loss: 0.3939 - acc: 0.8740
Epoch 154/500
 - 3s - loss: 0.2633 - acc: 0.9280
Epoch 155/500
 - 3s - loss: 0.2652 - acc: 0.9190
Epoch 156/500
 - 3s - loss: 0.3344 - acc: 0.8940
Epoch 157/500
 - 3s - loss: 0.2646 - acc: 0.9240
Epoch 158/500
 - 3s - loss: 0.2803 - acc: 0.9170
Epoch 159/500
 - 3s - loss: 0.3612 - acc: 0.8940
Epoch 160/500
 - 3s - loss: 0.2599 - acc: 0.9260
Epoch 161/500
 - 3s - loss: 0.2636 - acc: 0.9180
Epoch 162/500
 - 3s - loss: 0.2598 - acc: 0.9260
Epoch 163/500
 - 3s - loss: 0.2687 - acc: 0.9190
Epoch 164/500
 - 3s - loss: 0.3422 - acc: 0.8960
Epoch 165/500
 - 3s - loss: 0.3056 - acc: 0.9070
Epoch 166/500
 - 3s - loss: 0.2551 - acc: 0.9340
Epoch 167/500
 - 3s - loss: 0.2569 - acc: 0.9200
Epoch 168/500
 - 3s - loss: 0.2677 - acc: 0.9240
Epoch 169/500
 - 3s - loss: 0.2677 - acc: 0.9280
Epoch 170/500
 - 3s - loss: 0.2736 - acc: 0.9230
Epoch 171/500
 - 3s - loss: 0.2536 - acc: 0.9240
Epoch 172/500
 - 4s - loss: 0.2967 - acc: 0.9160
Epoch 173/500
 - 4s - loss: 0.2471 - acc: 0.9270
Epoch 174/500
 - 3s - loss: 0.2499 - acc: 0.9210
Epoch 175/500
 - 4s - loss: 0.3666 - acc: 0.8970
Epoch 176/500
 - 4s - loss: 0.2454 - acc: 0.9270
Epoch 177/500
 - 3s - loss: 0.2431 - acc: 0.9330
Epoch 178/500
 - 3s - loss: 0.2476 - acc: 0.9290
Epoch 179/500
 - 3s - loss: 0.3269 - acc: 0.9030
Epoch 180/500
 - 3s - loss: 0.2401 - acc: 0.9250
Epoch 181/500
 - 3s - loss: 0.2412 - acc: 0.9290
Epoch 182/500
 - 3s - loss: 0.2438 - acc: 0.9300
Epoch 183/500
 - 3s - loss: 0.2439 - acc: 0.9300
Epoch 184/500
 - 3s - loss: 0.2747 - acc: 0.9130
Epoch 185/500
 - 3s - loss: 0.2443 - acc: 0.9250
Epoch 186/500
 - 3s - loss: 0.3478 - acc: 0.9030
Epoch 187/500
 - 3s - loss: 0.2428 - acc: 0.9300
Epoch 188/500
 - 3s - loss: 0.2305 - acc: 0.9330
Epoch 189/500
 - 3s - loss: 0.2348 - acc: 0.9360
Epoch 190/500
 - 3s - loss: 0.2319 - acc: 0.9320
Epoch 191/500
 - 3s - loss: 0.3580 - acc: 0.9010
Epoch 192/500
 - 3s - loss: 0.2276 - acc: 0.9360
Epoch 193/500
 - 3s - loss: 0.2264 - acc: 0.9330
Epoch 194/500
 - 3s - loss: 0.2273 - acc: 0.9310
Epoch 195/500
 - 3s - loss: 0.2496 - acc: 0.9260
Epoch 196/500
 - 3s - loss: 0.2272 - acc: 0.9330
Epoch 197/500
 - 3s - loss: 0.2273 - acc: 0.9350
Epoch 198/500
 - 3s - loss: 0.3299 - acc: 0.9110
Epoch 199/500
 - 3s - loss: 0.2211 - acc: 0.9400
Epoch 200/500
 - 3s - loss: 0.2237 - acc: 0.9340
Epoch 201/500
 - 3s - loss: 0.2225 - acc: 0.9350
Epoch 202/500
 - 3s - loss: 0.2907 - acc: 0.9160
Epoch 203/500
 - 3s - loss: 0.2207 - acc: 0.9370
Epoch 204/500
 - 3s - loss: 0.2196 - acc: 0.9380
Epoch 205/500
 - 3s - loss: 0.2708 - acc: 0.9210
Epoch 206/500
 - 3s - loss: 0.2139 - acc: 0.9460
Epoch 207/500
 - 3s - loss: 0.2178 - acc: 0.9360
Epoch 208/500
 - 3s - loss: 0.2618 - acc: 0.9290
Epoch 209/500
 - 3s - loss: 0.2327 - acc: 0.9410
Epoch 210/500
 - 3s - loss: 0.2162 - acc: 0.9320
Epoch 211/500
 - 3s - loss: 0.2170 - acc: 0.9420
Epoch 212/500
 - 3s - loss: 0.3573 - acc: 0.9000
Epoch 213/500
 - 3s - loss: 0.2050 - acc: 0.9480
Epoch 214/500
 - 3s - loss: 0.2081 - acc: 0.9410
Epoch 215/500
 - 3s - loss: 0.2119 - acc: 0.9410
Epoch 216/500
 - 3s - loss: 0.2143 - acc: 0.9370
Epoch 217/500
 - 3s - loss: 0.2845 - acc: 0.9120
Epoch 218/500
 - 3s - loss: 0.2072 - acc: 0.9390
Epoch 219/500
 - 3s - loss: 0.2096 - acc: 0.9450
Epoch 220/500
 - 3s - loss: 0.3284 - acc: 0.9040
Epoch 221/500
 - 3s - loss: 0.2026 - acc: 0.9450
Epoch 222/500
 - 3s - loss: 0.2026 - acc: 0.9440
Epoch 223/500
 - 3s - loss: 0.2346 - acc: 0.9290
Epoch 224/500
 - 3s - loss: 0.2362 - acc: 0.9340
Epoch 225/500
 - 3s - loss: 0.2029 - acc: 0.9470
Epoch 226/500
 - 3s - loss: 0.2055 - acc: 0.9390
Epoch 227/500
 - 3s - loss: 0.3374 - acc: 0.9030
Epoch 228/500
 - 3s - loss: 0.2014 - acc: 0.9480
Epoch 229/500
 - 3s - loss: 0.1983 - acc: 0.9440
Epoch 230/500
 - 3s - loss: 0.2021 - acc: 0.9370
Epoch 231/500
 - 3s - loss: 0.2076 - acc: 0.9380
Epoch 232/500
 - 3s - loss: 0.3294 - acc: 0.9100
Epoch 233/500
 - 3s - loss: 0.1952 - acc: 0.9500
Epoch 234/500
 - 3s - loss: 0.1950 - acc: 0.9480
Epoch 235/500
 - 3s - loss: 0.1993 - acc: 0.9410
Epoch 236/500
 - 3s - loss: 0.2410 - acc: 0.9240
Epoch 237/500
 - 3s - loss: 0.1954 - acc: 0.9440
Epoch 238/500
 - 3s - loss: 0.1957 - acc: 0.9470
Epoch 239/500
 - 3s - loss: 0.1955 - acc: 0.9420
Epoch 240/500
 - 3s - loss: 0.1999 - acc: 0.9380
Epoch 241/500
 - 3s - loss: 0.2351 - acc: 0.9320
Epoch 242/500
 - 3s - loss: 0.1923 - acc: 0.9460
Epoch 243/500
 - 3s - loss: 0.1950 - acc: 0.9470
Epoch 244/500
 - 3s - loss: 0.2202 - acc: 0.9250
Epoch 245/500
 - 3s - loss: 0.1897 - acc: 0.9470
Epoch 246/500
 - 3s - loss: 0.1882 - acc: 0.9380
Epoch 247/500
 - 3s - loss: 0.2372 - acc: 0.9320
Epoch 248/500
 - 3s - loss: 0.1886 - acc: 0.9510
Epoch 249/500
 - 3s - loss: 0.1855 - acc: 0.9460
Epoch 250/500
 - 3s - loss: 0.1953 - acc: 0.9410
Epoch 251/500
 - 3s - loss: 0.2807 - acc: 0.9300
Epoch 252/500
 - 3s - loss: 0.1828 - acc: 0.9530
Epoch 253/500
 - 3s - loss: 0.1841 - acc: 0.9480
Epoch 254/500
 - 3s - loss: 0.1887 - acc: 0.9440
Epoch 255/500
 - 3s - loss: 0.2025 - acc: 0.9440
Epoch 256/500
 - 3s - loss: 0.2718 - acc: 0.9330
Epoch 257/500
 - 3s - loss: 0.1811 - acc: 0.9500
Epoch 258/500
 - 3s - loss: 0.1896 - acc: 0.9450
Epoch 259/500
 - 3s - loss: 0.1826 - acc: 0.9440
Epoch 260/500
 - 3s - loss: 0.1835 - acc: 0.9450
Epoch 261/500
 - 3s - loss: 0.2578 - acc: 0.9300
Epoch 262/500
 - 3s - loss: 0.1768 - acc: 0.9460
Epoch 263/500
 - 3s - loss: 0.1785 - acc: 0.9540
Epoch 264/500
 - 3s - loss: 0.1940 - acc: 0.9450
Epoch 265/500
 - 3s - loss: 0.1810 - acc: 0.9480
Epoch 266/500
 - 3s - loss: 0.1794 - acc: 0.9490
Epoch 267/500
 - 3s - loss: 0.1969 - acc: 0.9490
Epoch 268/500
 - 3s - loss: 0.2382 - acc: 0.9350
Epoch 269/500
 - 3s - loss: 0.1754 - acc: 0.9530
Epoch 270/500
 - 3s - loss: 0.1747 - acc: 0.9520
Epoch 271/500
 - 3s - loss: 0.1791 - acc: 0.9420
Epoch 272/500
 - 3s - loss: 0.1766 - acc: 0.9510
Epoch 273/500
 - 3s - loss: 0.2068 - acc: 0.9370
Epoch 274/500
 - 3s - loss: 0.2667 - acc: 0.9360
Epoch 275/500
 - 3s - loss: 0.1700 - acc: 0.9540
Epoch 276/500
 - 3s - loss: 0.1714 - acc: 0.9570
Epoch 277/500
 - 3s - loss: 0.1738 - acc: 0.9490
Epoch 278/500
 - 3s - loss: 0.1745 - acc: 0.9530
Epoch 279/500
 - 3s - loss: 0.1729 - acc: 0.9480
Epoch 280/500
 - 3s - loss: 0.1908 - acc: 0.9430
Epoch 281/500
 - 3s - loss: 0.1674 - acc: 0.9580
Epoch 282/500
 - 3s - loss: 0.1717 - acc: 0.9510
Epoch 283/500
 - 3s - loss: 0.1718 - acc: 0.9520
Epoch 284/500
 - 3s - loss: 0.1694 - acc: 0.9510
Epoch 285/500
 - 3s - loss: 0.2790 - acc: 0.9290
Epoch 286/500
 - 3s - loss: 0.1621 - acc: 0.9560
Epoch 287/500
 - 3s - loss: 0.1618 - acc: 0.9590
Epoch 288/500
 - 3s - loss: 0.1652 - acc: 0.9560
Epoch 289/500
 - 3s - loss: 0.1636 - acc: 0.9560
Epoch 290/500
 - 3s - loss: 0.2966 - acc: 0.9160
Epoch 291/500
 - 3s - loss: 0.1625 - acc: 0.9580
Epoch 292/500
 - 3s - loss: 0.1599 - acc: 0.9550
Epoch 293/500
 - 3s - loss: 0.1608 - acc: 0.9620
Epoch 294/500
 - 3s - loss: 0.1643 - acc: 0.9540
Epoch 295/500
 - 3s - loss: 0.1633 - acc: 0.9500
Epoch 296/500
 - 3s - loss: 0.1665 - acc: 0.9550
Epoch 297/500
 - 3s - loss: 0.2146 - acc: 0.9400
Epoch 298/500
 - 3s - loss: 0.1561 - acc: 0.9620
Epoch 299/500
 - 3s - loss: 0.1581 - acc: 0.9570
Epoch 300/500
 - 3s - loss: 0.1602 - acc: 0.9550
Epoch 301/500
 - 3s - loss: 0.1692 - acc: 0.9490
Epoch 302/500
 - 3s - loss: 0.1552 - acc: 0.9510
Epoch 303/500
 - 3s - loss: 0.1590 - acc: 0.9530
Epoch 304/500
 - 3s - loss: 0.1784 - acc: 0.9470
Epoch 305/500
 - 3s - loss: 0.1576 - acc: 0.9590
Epoch 306/500
 - 3s - loss: 0.1562 - acc: 0.9620
Epoch 307/500
 - 3s - loss: 0.1543 - acc: 0.9610
Epoch 308/500
 - 3s - loss: 0.1569 - acc: 0.9530
Epoch 309/500
 - 3s - loss: 0.2514 - acc: 0.9330
Epoch 310/500
 - 3s - loss: 0.1849 - acc: 0.9500
Epoch 311/500
 - 3s - loss: 0.1482 - acc: 0.9620
Epoch 312/500
 - 3s - loss: 0.1516 - acc: 0.9560
Epoch 313/500
 - 3s - loss: 0.1524 - acc: 0.9580
Epoch 314/500
 - 3s - loss: 0.1539 - acc: 0.9540
Epoch 315/500
 - 3s - loss: 0.1509 - acc: 0.9600
Epoch 316/500
 - 3s - loss: 0.3198 - acc: 0.9250
Epoch 317/500
 - 3s - loss: 0.1453 - acc: 0.9670
Epoch 318/500
 - 3s - loss: 0.1465 - acc: 0.9660
Epoch 319/500
 - 3s - loss: 0.1476 - acc: 0.9630
Epoch 320/500
 - 3s - loss: 0.1501 - acc: 0.9600
Epoch 321/500
 - 3s - loss: 0.1522 - acc: 0.9600
Epoch 322/500
 - 3s - loss: 0.1531 - acc: 0.9590
Epoch 323/500
 - 3s - loss: 0.1496 - acc: 0.9600
Epoch 324/500
 - 3s - loss: 0.2325 - acc: 0.9280
Epoch 325/500
 - 3s - loss: 0.1583 - acc: 0.9630
Epoch 326/500
 - 3s - loss: 0.1427 - acc: 0.9660
Epoch 327/500
 - 3s - loss: 0.1446 - acc: 0.9620
Epoch 328/500
 - 3s - loss: 0.1459 - acc: 0.9550
Epoch 329/500
 - 3s - loss: 0.1471 - acc: 0.9620
Epoch 330/500
 - 3s - loss: 0.1461 - acc: 0.9560
Epoch 331/500
 - 3s - loss: 0.2298 - acc: 0.9440
Epoch 332/500
 - 3s - loss: 0.1387 - acc: 0.9650
Epoch 333/500
 - 3s - loss: 0.1411 - acc: 0.9620
Epoch 334/500
 - 3s - loss: 0.1432 - acc: 0.9640
Epoch 335/500
 - 3s - loss: 0.1423 - acc: 0.9600
Epoch 336/500
 - 3s - loss: 0.1464 - acc: 0.9580
Epoch 337/500
 - 3s - loss: 0.1438 - acc: 0.9590
Epoch 338/500
 - 3s - loss: 0.2358 - acc: 0.9430
Epoch 339/500
 - 3s - loss: 0.1338 - acc: 0.9700
Epoch 340/500
 - 3s - loss: 0.1366 - acc: 0.9670
Epoch 341/500
 - 3s - loss: 0.2185 - acc: 0.9550
Epoch 342/500
 - 3s - loss: 0.1370 - acc: 0.9660
Epoch 343/500
 - 3s - loss: 0.1374 - acc: 0.9680
Epoch 344/500
 - 3s - loss: 0.1386 - acc: 0.9640
Epoch 345/500
 - 3s - loss: 0.1387 - acc: 0.9680
Epoch 346/500
 - 3s - loss: 0.1391 - acc: 0.9540
Epoch 347/500
 - 3s - loss: 0.1387 - acc: 0.9640
Epoch 348/500
 - 3s - loss: 0.1402 - acc: 0.9640
Epoch 349/500
 - 3s - loss: 0.2935 - acc: 0.9390
Epoch 350/500
 - 3s - loss: 0.1324 - acc: 0.9670
Epoch 351/500
 - 3s - loss: 0.1339 - acc: 0.9690
Epoch 352/500
 - 3s - loss: 0.1328 - acc: 0.9610
Epoch 353/500
 - 3s - loss: 0.1356 - acc: 0.9650
Epoch 354/500
 - 3s - loss: 0.1338 - acc: 0.9640
Epoch 355/500
 - 3s - loss: 0.1340 - acc: 0.9610
Epoch 356/500
 - 3s - loss: 0.1349 - acc: 0.9670
Epoch 357/500
 - 3s - loss: 0.2347 - acc: 0.9440
Epoch 358/500
 - 3s - loss: 0.1885 - acc: 0.9520
Epoch 359/500
 - 3s - loss: 0.1281 - acc: 0.9760
Epoch 360/500
 - 3s - loss: 0.1294 - acc: 0.9720
Epoch 361/500
 - 3s - loss: 0.1302 - acc: 0.9640
Epoch 362/500
 - 3s - loss: 0.1299 - acc: 0.9680
Epoch 363/500
 - 3s - loss: 0.1316 - acc: 0.9660
Epoch 364/500
 - 3s - loss: 0.2295 - acc: 0.9410
Epoch 365/500
 - 3s - loss: 0.1261 - acc: 0.9730
Epoch 366/500
 - 3s - loss: 0.1278 - acc: 0.9680
Epoch 367/500
 - 3s - loss: 0.1272 - acc: 0.9680
Epoch 368/500
 - 3s - loss: 0.1288 - acc: 0.9680
Epoch 369/500
 - 3s - loss: 0.1271 - acc: 0.9720
Epoch 370/500
 - 3s - loss: 0.1287 - acc: 0.9620
Epoch 371/500
 - 3s - loss: 0.1293 - acc: 0.9710
Epoch 372/500
 - 3s - loss: 0.1270 - acc: 0.9630
Epoch 373/500
 - 3s - loss: 0.2037 - acc: 0.9530
Epoch 374/500
 - 3s - loss: 0.1310 - acc: 0.9710
Epoch 375/500
 - 3s - loss: 0.1204 - acc: 0.9750
Epoch 376/500
 - 3s - loss: 0.1217 - acc: 0.9730
Epoch 377/500
 - 3s - loss: 0.1250 - acc: 0.9690
Epoch 378/500
 - 3s - loss: 0.1252 - acc: 0.9690
Epoch 379/500
 - 3s - loss: 0.1267 - acc: 0.9680
Epoch 380/500
 - 3s - loss: 0.1260 - acc: 0.9710
Epoch 381/500
 - 3s - loss: 0.1262 - acc: 0.9630
Epoch 382/500
 - 3s - loss: 0.1248 - acc: 0.9680
Epoch 383/500
 - 3s - loss: 0.2545 - acc: 0.9430
Epoch 384/500
 - 3s - loss: 0.1167 - acc: 0.9710
Epoch 385/500
 - 3s - loss: 0.1187 - acc: 0.9760
Epoch 386/500
 - 3s - loss: 0.1227 - acc: 0.9690
Epoch 387/500
 - 3s - loss: 0.1202 - acc: 0.9740
Epoch 388/500
 - 3s - loss: 0.1283 - acc: 0.9590
Epoch 389/500
 - 3s - loss: 0.1203 - acc: 0.9720
Epoch 390/500
 - 3s - loss: 0.1209 - acc: 0.9700
Epoch 391/500
 - 3s - loss: 0.1176 - acc: 0.9680
Epoch 392/500
 - 3s - loss: 0.2086 - acc: 0.9480
Epoch 393/500
 - 3s - loss: 0.1133 - acc: 0.9800
Epoch 394/500
 - 3s - loss: 0.1142 - acc: 0.9780
Epoch 395/500
 - 3s - loss: 0.1164 - acc: 0.9710
Epoch 396/500
 - 3s - loss: 0.1232 - acc: 0.9640
Epoch 397/500
 - 3s - loss: 0.1172 - acc: 0.9740
Epoch 398/500
 - 3s - loss: 0.1196 - acc: 0.9640
Epoch 399/500
 - 3s - loss: 0.1183 - acc: 0.9780
Epoch 400/500
 - 3s - loss: 0.2167 - acc: 0.9530
Epoch 401/500
 - 3s - loss: 0.1167 - acc: 0.9700
Epoch 402/500
 - 3s - loss: 0.1124 - acc: 0.9710
Epoch 403/500
 - 3s - loss: 0.1124 - acc: 0.9680
Epoch 404/500
 - 3s - loss: 0.1140 - acc: 0.9760
Epoch 405/500
 - 3s - loss: 0.1160 - acc: 0.9740
Epoch 406/500
 - 3s - loss: 0.1167 - acc: 0.9790
Epoch 407/500
 - 3s - loss: 0.1182 - acc: 0.9680
Epoch 408/500
 - 3s - loss: 0.2614 - acc: 0.9420
Epoch 409/500
 - 3s - loss: 0.1100 - acc: 0.9770
Epoch 410/500
 - 3s - loss: 0.1114 - acc: 0.9750
Epoch 411/500
 - 3s - loss: 0.1104 - acc: 0.9760
Epoch 412/500
 - 3s - loss: 0.1115 - acc: 0.9730
Epoch 413/500
 - 3s - loss: 0.1767 - acc: 0.9600
Epoch 414/500
 - 3s - loss: 0.1097 - acc: 0.9750
Epoch 415/500
 - 3s - loss: 0.1108 - acc: 0.9760
Epoch 416/500
 - 3s - loss: 0.1099 - acc: 0.9760
Epoch 417/500
 - 3s - loss: 0.1327 - acc: 0.9630
Epoch 418/500
 - 3s - loss: 0.1672 - acc: 0.9630
Epoch 419/500
 - 3s - loss: 0.1090 - acc: 0.9800
Epoch 420/500
 - 3s - loss: 0.1082 - acc: 0.9730
Epoch 421/500
 - 3s - loss: 0.1104 - acc: 0.9720
Epoch 422/500
 - 3s - loss: 0.1067 - acc: 0.9750
Epoch 423/500
 - 3s - loss: 0.1122 - acc: 0.9740
Epoch 424/500
 - 3s - loss: 0.1108 - acc: 0.9690
Epoch 425/500
 - 3s - loss: 0.2437 - acc: 0.9460
Epoch 426/500
 - 3s - loss: 0.1059 - acc: 0.9770
Epoch 427/500
 - 3s - loss: 0.1048 - acc: 0.9830
Epoch 428/500
 - 3s - loss: 0.1061 - acc: 0.9770
Epoch 429/500
 - 3s - loss: 0.1075 - acc: 0.9740
Epoch 430/500
 - 3s - loss: 0.1143 - acc: 0.9720
Epoch 431/500
 - 3s - loss: 0.1189 - acc: 0.9710
Epoch 432/500
 - 3s - loss: 0.1054 - acc: 0.9760
Epoch 433/500
 - 3s - loss: 0.1051 - acc: 0.9760
Epoch 434/500
 - 3s - loss: 0.1412 - acc: 0.9630
Epoch 435/500
 - 3s - loss: 0.1736 - acc: 0.9640
Epoch 436/500
 - 3s - loss: 0.1016 - acc: 0.9790
Epoch 437/500
 - 3s - loss: 0.1026 - acc: 0.9790
Epoch 438/500
 - 3s - loss: 0.1018 - acc: 0.9790
Epoch 439/500
 - 3s - loss: 0.1064 - acc: 0.9740
Epoch 440/500
 - 3s - loss: 0.1024 - acc: 0.9770
Epoch 441/500
 - 3s - loss: 0.1070 - acc: 0.9770
Epoch 442/500
 - 3s - loss: 0.1056 - acc: 0.9750
Epoch 443/500
 - 3s - loss: 0.1034 - acc: 0.9790
Epoch 444/500
 - 3s - loss: 0.1761 - acc: 0.9630
Epoch 445/500
 - 3s - loss: 0.1004 - acc: 0.9830
Epoch 446/500
 - 3s - loss: 0.1018 - acc: 0.9760
Epoch 447/500
 - 3s - loss: 0.1011 - acc: 0.9770
Epoch 448/500
 - 3s - loss: 0.1057 - acc: 0.9720
Epoch 449/500
 - 3s - loss: 0.1017 - acc: 0.9800
Epoch 450/500
 - 3s - loss: 0.1021 - acc: 0.9780
Epoch 451/500
 - 3s - loss: 0.1054 - acc: 0.9710
Epoch 452/500
 - 3s - loss: 0.1006 - acc: 0.9820
Epoch 453/500
 - 3s - loss: 0.1027 - acc: 0.9780
Epoch 454/500
 - 3s - loss: 0.1759 - acc: 0.9550
Epoch 455/500
 - 3s - loss: 0.1061 - acc: 0.9840
Epoch 456/500
 - 3s - loss: 0.0958 - acc: 0.9790
Epoch 457/500
 - 3s - loss: 0.0960 - acc: 0.9800
Epoch 458/500
 - 3s - loss: 0.0995 - acc: 0.9790
Epoch 459/500
 - 3s - loss: 0.0982 - acc: 0.9810
Epoch 460/500
 - 3s - loss: 0.0997 - acc: 0.9730
Epoch 461/500
 - 3s - loss: 0.0998 - acc: 0.9770
Epoch 462/500
 - 3s - loss: 0.2572 - acc: 0.9430
Epoch 463/500
 - 3s - loss: 0.0932 - acc: 0.9820
Epoch 464/500
 - 3s - loss: 0.0942 - acc: 0.9820
Epoch 465/500
 - 3s - loss: 0.0946 - acc: 0.9820
Epoch 466/500
 - 3s - loss: 0.0967 - acc: 0.9790
Epoch 467/500
 - 3s - loss: 0.0947 - acc: 0.9840
Epoch 468/500
 - 3s - loss: 0.0971 - acc: 0.9780
Epoch 469/500
 - 3s - loss: 0.0976 - acc: 0.9810
Epoch 470/500
 - 3s - loss: 0.0983 - acc: 0.9820
Epoch 471/500
 - 3s - loss: 0.0962 - acc: 0.9760
Epoch 472/500
 - 3s - loss: 0.0988 - acc: 0.9760
Epoch 473/500
 - 3s - loss: 0.0929 - acc: 0.9820
Epoch 474/500
 - 3s - loss: 0.0955 - acc: 0.9790
Epoch 475/500
 - 3s - loss: 0.2046 - acc: 0.9600
Epoch 476/500
 - 3s - loss: 0.0907 - acc: 0.9850
Epoch 477/500
 - 3s - loss: 0.0903 - acc: 0.9820
Epoch 478/500
 - 3s - loss: 0.0900 - acc: 0.9820
Epoch 479/500
 - 3s - loss: 0.0925 - acc: 0.9810
Epoch 480/500
 - 3s - loss: 0.0933 - acc: 0.9840
Epoch 481/500
 - 3s - loss: 0.1802 - acc: 0.9570
Epoch 482/500
 - 3s - loss: 0.0892 - acc: 0.9840
Epoch 483/500
 - 3s - loss: 0.0891 - acc: 0.9820
Epoch 484/500
 - 3s - loss: 0.0899 - acc: 0.9820
Epoch 485/500
 - 3s - loss: 0.0907 - acc: 0.9840
Epoch 486/500
 - 3s - loss: 0.0905 - acc: 0.9830
Epoch 487/500
 - 3s - loss: 0.0921 - acc: 0.9790
Epoch 488/500
 - 3s - loss: 0.0936 - acc: 0.9800
Epoch 489/500
 - 3s - loss: 0.0913 - acc: 0.9770
Epoch 490/500
 - 3s - loss: 0.0920 - acc: 0.9820
Epoch 491/500
 - 3s - loss: 0.1491 - acc: 0.9720
Epoch 492/500
 - 3s - loss: 0.1449 - acc: 0.9770
Epoch 493/500
 - 3s - loss: 0.0857 - acc: 0.9850
Epoch 494/500
 - 3s - loss: 0.0859 - acc: 0.9850
Epoch 495/500
 - 3s - loss: 0.0866 - acc: 0.9870
Epoch 496/500
 - 3s - loss: 0.0873 - acc: 0.9790
Epoch 497/500
 - 3s - loss: 0.0881 - acc: 0.9820
Epoch 498/500
 - 3s - loss: 0.0882 - acc: 0.9810
Epoch 499/500
 - 3s - loss: 0.0880 - acc: 0.9870
Epoch 500/500
 - 3s - loss: 0.0878 - acc: 0.9790
Model Accuracy: 98.30%
['T', 'U', 'V', 'W', 'X'] -> Y
['V', 'W', 'X', 'Y'] -> Z
['A', 'B', 'C', 'D'] -> E
['C'] -> D
['K', 'L', 'M', 'N'] -> O
['B'] -> C
['C', 'D', 'E', 'F', 'G'] -> H
['Q', 'R'] -> S
['T', 'U', 'V', 'W', 'X'] -> Y
['D', 'E', 'F', 'G', 'H'] -> I
['B', 'C', 'D', 'E', 'F'] -> G
['C', 'D', 'E', 'F'] -> G
['C'] -> D
['K', 'L', 'M'] -> N
['B', 'C', 'D', 'E'] -> F
['N', 'O'] -> P
['P'] -> Q
['W'] -> X
['V', 'W', 'X'] -> Y
['C'] -> D

Keras入门——(5)长短期记忆网络LSTM(二)的更多相关文章

  1. 如何预测股票分析--长短期记忆网络(LSTM)

    在上一篇中,我们回顾了先知的方法,但是在这个案例中表现也不是特别突出,今天介绍的是著名的l s t m算法,在时间序列中解决了传统r n n算法梯度消失问题的的它这一次还会有令人杰出的表现吗? 长短期 ...

  2. Keras入门——(7)长短期记忆网络LSTM(四)

    数据准备:http://www.manythings.org/anki/cmn-eng.zip 源代码:https://github.com/pjgao/seq2seq_keras 参考:https: ...

  3. Keras入门——(6)长短期记忆网络LSTM(三)

    参考: https://blog.csdn.net/u012735708/article/details/82769711 https://zybuluo.com/hanbingtao/note/58 ...

  4. Keras入门——(4)长短期记忆网络LSTM(一)

    参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...

  5. 递归神经网络之理解长短期记忆网络(LSTM NetWorks)(转载)

    递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这 ...

  6. 理解长短期记忆网络(LSTM NetWorks)

    转自:http://www.csdn.net/article/2015-11-25/2826323 原文链接:Understanding LSTM Networks(译者/刘翔宇 审校/赵屹华 责编/ ...

  7. LSTM - 长短期记忆网络

    循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurre ...

  8. LSTMs 长短期记忆网络系列

    RNN的长期依赖问题 什么是长期依赖? 长期依赖是指当前系统的状态,可能受很长时间之前系统状态的影响,是RNN中无法解决的一个问题. 如果从(1) “ 这块冰糖味道真?”来预测下一个词,是很容易得出“ ...

  9. LSTM(长短期记忆网络)及其tensorflow代码应用

     本文主要包括: 一.什么是LSTM 二.LSTM的曲线拟合 三.LSTM的分类问题 四.为什么LSTM有助于消除梯度消失 一.什么是LSTM Long Short Term 网络即为LSTM,是一种 ...

随机推荐

  1. 5_1 大理石在哪儿(UVa10474)<排序与查找>

    Raju和Meena喜欢玩弹珠,他们有许多上面有号码的弹珠.一开始时,Raju按照弹珠上面的号码由小到大排成一列,然后Meena会要求Raju找出某个号码的第一颗弹珠所在的位置.她会算1…2…3…,如 ...

  2. 【代码学习】PYTHON 异常处理

    一.什么是异常 在程序执行过程中可能会影响程序的正常执行,一般情况下,在python无法正常处理程序时就会发生一个异常 当python脚本发生异常时我们需要捕获处理他,否则程序会终止执行 二.异常处理 ...

  3. QSS基础-设置控件样式

    1.QSS基础-设置同类控件样式'''QSS基础:Qt Style SheetQt样式表用于设置控件的样式和风格(比如控件的背景色,字体颜色,字体大小等)和CSS的功能比较相似,功能相似''' fro ...

  4. Spring Boot 学习前你应该知道的 Maven 知识

    Maven 是什么? 回答这个问题,我们先来了解下没有Maven,我们是怎么使用开发者工具IDE去开发Java程序的.我之前开发Java程序不多,但是我还是记得,我是从网上下载或从合作方拷贝 jar ...

  5. inline-block,真的懂吗

    曾几何时,display:inline-block 已经深入「大街小巷」,随处可见 「display:inline-block; *display:inline; *zoom:1; 」这样的代码.如今 ...

  6. 【原】Django数据Model层总结

    vlaues - 单条记录 - <class 'dict'> 多条记录 - <class 'django.db.models.query.QuerySet'> vlaues_l ...

  7. leetcode 0211

    目录 ✅ 1217. 玩筹码 描述 解答 c java py ✅ 206. 反转链表 描述 解答 c java py ✅ 922. 按奇偶排序数组 II 描述 解答 c 双指针soldier tddo ...

  8. bat获取当前路径

    @echo off setlocal EnableDelayedExpansion echo 当前正在运行的批处理文件所在路径:!cd! pause @echo off echo 当前目录是:%cd% ...

  9. BinaryTree(二叉树)

    我认为二叉树的递归实现体现了递归思想的一些重要性质,如果对递归的理解不够的话,想利用递归来实现是很费劲的(实际上我现在都还有些懵...),虽然会用,但一些地方不能弄清楚原因. 经过几天的学习,看了许多 ...

  10. linux文件或目录属性

    wc(word count)命令的功能:统计指定文件的字节数.字数.行数.,并将统计结果显示输出 命令参数: -c 只显示字节数 -l    只显示行数 -w 只显示字数 od命令:查看二进制文件信息 ...