Monkey and Banana

Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

Submit Status

Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

Input Specification

The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xiyi and zi.
Input is terminated by a value of zero (0) for n.

Output Specification

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height"

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

动态规划第一题!

本题一开始我都没看懂哪里该用动态规划。而且关于砖块这里的处理,我也很伤脑筋。

解题思路是这样的:

每一种砖块都当成三种(底面积分别是 长 宽,长 高,宽 高)。。存入结构体数组中

然后按底面积大小进行排序。

动规的过程是这样的:

循环 1 到 n*3个砖块

再嵌套一个循环 获取当前砖块下的,最大高度

加到砖块高度上

这样,遍历完成后,就会存贮了最大高度

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
struct node
{
int x,y,z,h;
}block[];
bool cmp2(int a,int b)
{
return a<b;
}
bool cmp(node a,node b)
{
return a.x*a.y<b.x*b.y;
}
int main()
{
int n;
int count=;
while (scanf("%d",&n)!=EOF&&n)
{
int a[];
int cur=;
for (int i=;i<n;i++)
{
scanf("%d %d %d",&a[],&a[],&a[]); //这里对长宽高也要排一下顺序,升序。
sort(a,a+,cmp2);
block[cur].x=a[];block[cur].y=a[];block[cur++].z=a[];
block[cur].x=a[];block[cur].y=a[];block[cur++].z=a[];
block[cur].x=a[];block[cur].y=a[];block[cur++].z=a[];
}
sort(block,block+cur,cmp);
block[].h=block[].z;
int max=;
for (int j=;j<cur;j++) //遍历所有的砖块
{
max=;
for (int k=;k<j;k++)
{
if (block[k].h>max&&block[k].x<block[j].x&&block[k].y<block[j].y)//寻找该砖块下的最大高度值
max=block[k].h; //max当中保存的即为前j-1个砖块的最大高度值。
}
block[j].h=block[j].z+max;//找到当前最高值,加入到当前砖块的h中。
}
max=;
for (int q=;q<cur;q++)
{
if (max<block[q].h) max=block[q].h;
}
count++;
printf("Case %d: maximum height = %d\n",count,max);
}
return ;
}

HDU——Monkey and Banana 动态规划的更多相关文章

  1. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  2. Monkey and Banana(HDU 1069 动态规划)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  5. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  6. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. (最大上升子序列)Monkey and Banana -- hdu -- 1069

    http://acm.hdu.edu.cn/showproblem.php?pid=1069      Monkey and Banana Time Limit:1000MS     Memory L ...

  9. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

随机推荐

  1. python 函数map()、filter()、reduce()

    map()函数    将一个列表进行遍历,对每一个字符串进行处理: 例如: num_list = ["我","是","哈哈","太 ...

  2. 8张图片掌握JS原型链

  3. 连续(Continuity) - 有界(Bounded) - 收敛(Convergence)

    连续(Continuity) 所有点连续   ->   一致连续 (uniform continuity)  ->  绝对连续  -> 李普希兹连续(Lipschitz) 弱    ...

  4. P1069 微博转发抽奖

    P1069 微博转发抽奖 转跳点:

  5. ubuntu16下安装mongodb 3.6

    1.安装MongoDB社区版     # 1. 导入MongoDB public GPG Key sudo apt-key adv --keyserver hkp://keyserver.ubuntu ...

  6. R 《回归分析与线性统计模型》page140,5.1

    rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data140.xlsx") ...

  7. [前端] Vue封装播放器、打包、上传NPM

    一.使用icomoon 1.生成和下载图标相关文件 先使用icomoon获取我们要使用的图标,例如播放.暂停.停止.全屏等图标. icomoon网站:https://icomoon.io/app/#/ ...

  8. Day5 - C - Agri-Net POJ - 1258

    Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet c ...

  9. Spring的AOP开发(基于AspectJ的XML方式)

    Spring的AOP的简介: AOP思想最早是由AOP联盟组织提出的.Spring是使用这种思想最好的框架 Spring的AOP有自己实现的方式(非常繁琐). Aspect是一个AOP的框架, Spr ...

  10. hibernate 中 query.list()的优化

    2018年3月15日  今天做项目遇到一个需求,问题是在调用query.list()的时候,因为数据也多大概700条左右,查询一次需要30s+,这简直是不能忍,于是开始考虑怎么优化. 1.因为是单表查 ...