开发环境keil4,芯片STM32F103C8T6

1、main.c

//串口实验
#include "sys.h"
#include "delay.h"
#include "key.h"
#define DC12VDO_ON() GPIO_SetBits (GPIOC, GPIO_Pin_13)
#define DC12VDO_OFF() GPIO_ResetBits (GPIOC, GPIO_Pin_13) int Index1,Index2,Index3 = ;
int time1;
unsigned char gUart_Rece_Buf1[];
unsigned char gUart_Rece_Buf2[];
unsigned char gUart_Rece_Buf3[];
int i,j=;
u8 key;
int main(void)
{
delay_init(); //延时函数初始化
sys_Init(); //系统初始化(时钟初始化、中断初始化、GPIOx初始化、串口1初始化、串口2初始化、串口3初始化)
while()
{
DC12VDO_OFF();//led常亮
key=KEY_Scan();
if(key==)
{
DC12VDO_ON();//灭led
delay_ms();//等待
}
}
}

2、key.c

#include "key.h"
#include "delay.h"
#include "sys.h"
uint8_t K1_Value;
u8 KEY_Scan(void)
{
if(!GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0))
{
delay_ms(); //防抖
if(!GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0))
{
K1_Value=;
while(!GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0));
}
}
else K1_Value=;
return K1_Value;
}

3、delay.c

#include "delay.h"
#include "sys.h"
////////////////////////////////////////////////////////////////////////////////// static u8 fac_us=;//us延时倍乘数
static u16 fac_ms=;//ms延时倍乘数 void delay_init() { SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8
fac_us=SystemCoreClock/; //为系统时钟的1/8
fac_ms=(u16)fac_us*; //非OS下,代表每个ms需要的systick时钟数 } void delay_us(u32 nus)
{
u32 temp;
SysTick->LOAD=nus*fac_us; //时间加载
SysTick->VAL=0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(<<))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
} void delay_ms(u16 nms)
{
u32 temp;
SysTick->LOAD=(u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit)
SysTick->VAL =0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(<<))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
}

4、sys.c

#include "sys.h"

/*******************************************************************************
* Function Name : RCC_Configuration
* Description : Configures the different system clocks.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;//HSEStartUpStatus是枚举函数的参数,两个参数ERROR = 0, SUCCESS = !ERROR
/* Setup the microcontroller system. Initialize the Embedded Flash Interface,
initialize the PLL and update the SystemFrequency variable. */
//SystemInit(); /* RCC system reset(for debug purpose) */
RCC_DeInit(); //初始化RCC /* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON); /* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(HSEStartUpStatus == SUCCESS)
{ /* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1); /* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1); /* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2); /* PLLCLK = 8MHz * 9 = 72 MHz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); /* Enable PLL */
RCC_PLLCmd(ENABLE); /* Wait till PLL is ready */
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
} /* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /* Wait till PLL is used as system clock source */
while(RCC_GetSYSCLKSource() != 0x08)
{
}
} /* Enable GPIOx clock */
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC , ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB , ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA , ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_AFIO , ENABLE ); /* Enable USART1&2 clocks */
// Enable GPIOA clock
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE );
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE ); /* Enable USART3 clocks */
// Enable GPIOB clock
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE );
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE );
} /*******************************************************************************
* Function Name : GPIO_Configuration
* Description : Configures the different GPIO ports.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure; //--------------------------->PB0
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOC, &GPIO_InitStructure); //-------------------------USART1_TX-->PA9 , USART1_RX-->PA10
/* Configure USART1_Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure); /* Configure USART1_Rx as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure); //-------------------------USART2_TX-->PA2 , USART2_RX-->PA3
/* Configure USART2_Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure); /* Configure USART2_Rx as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure); //-------------------------USART3_TX-->PB10 , USART3_RX-->PB11
/* Configure USART3_Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure); /* Configure USART3_Rx as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); } /*******************************************************************************
* Function Name : NVIC_Configuration
* Description : Configures Vector Table base location.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
#define VECT_TAB_FLASH
//#define VECT_TAB_FLASH_IAP
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure; #if defined (VECT_TAB_RAM)
/* Set the Vector Table base location at 0x20000000 */
NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#elif defined(VECT_TAB_FLASH_IAP)
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x18000);
__set_FAULTMASK();//开放总中断
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
//__set_FAULTMASK(0);//开放总中断
#endif /* Configure the NVIC Preemption Priority Bits */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); /* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = ;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure); /* Enable the USART2 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = ;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the USART3 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = ;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
} /*******************************************************************************
* Function Name : USART1_Configuration
* Description : Configures USART1.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USART1_Configuration(void)
{
USART_InitTypeDef USART_InitStructure; /* USART1 configuration ------------------------------------------------------*/
/*
USART1 configured as follow:
- BaudRate = 9600 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
//USART_InitStructure.USART_Mode = USART_Mode_Rx; /* Configure the USART1 */
USART_Init(USART1, &USART_InitStructure); /* Enable USART1 Receive interrupt */
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); /* Enable the USART1 */
USART_Cmd(USART1, ENABLE); /* 如下语句解决第1个字节无法正确发送出去的问题 */
USART_ClearFlag(USART1, USART_FLAG_TC); // 清标志
} /*******************************************************************************
* Function Name : USART2_Configuration
* Description : Configures USART2.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USART2_Configuration(void)
{
USART_InitTypeDef USART_InitStructure; /* USART2 configuration ------------------------------------------------------*/
/*
USART2 configured as follow:
- BaudRate = 9600 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
//USART_InitStructure.USART_Mode = USART_Mode_Rx; /* Configure the USART2 */
USART_Init(USART2, &USART_InitStructure); /* Enable USART2 Receive interrupt */
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE); /* Enable the USART2 */
USART_Cmd(USART2, ENABLE); /* 如下语句解决第1个字节无法正确发送出去的问题 */
USART_ClearFlag(USART2, USART_FLAG_TC); // 清标志
} /*******************************************************************************
* Function Name : USART3_Configuration
* Description : Configures USART3.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USART3_Configuration(void)
{
USART_InitTypeDef USART_InitStructure; /* USART3 configuration ------------------------------------------------------*/
/*
USART3 configured as follow:
- BaudRate = 9600 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
//USART_InitStructure.USART_Mode = USART_Mode_Rx; /* Configure the USART3 */
USART_Init(USART3, &USART_InitStructure); /* Enable USART3 Receive interrupt */
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); /* Enable the USART3 */
USART_Cmd(USART3, ENABLE); /* 如下语句解决第1个字节无法正确发送出去的问题 */
USART_ClearFlag(USART3, USART_FLAG_TC); // 清标志
} //BSP初始化函数
void sys_Init(void)
{
RCC_Configuration();
NVIC_Configuration();
GPIO_Configuration();
USART1_Configuration();
USART2_Configuration();
USART3_Configuration();
} #ifdef DEBUG
/*******************************************************************************
* Function Name : assert_failed
* Description : Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* Input : - file: pointer to the source file name
* - line: assert_param error line source number
* Output : None
* Return : None
*******************************************************************************/
void assert_failed(u8* file, u32 line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */
while ()
{
}
}
#endif /******************* (C) COPYRIGHT 2008 STMicroelectronics *****END OF FILE****/

stm32:简单按键输入实现的更多相关文章

  1. STM32基本GPIO操作:按键输入(扫描+外部中断)

    (涉及专有名词较多,难免解释不到位,若有错误还请指出,谢谢!) 硬件连接图如下: 一.扫描 思路是在main函数中通过死循环来扫描端口电平状态检测,以此判断按键是否按下.实现较为简单. 1.初始化(注 ...

  2. linux下如何模拟按键输入和模拟鼠标【转】

    转自:http://www.cnblogs.com/leaven/archive/2010/11/30/1891947.html 查看/dev/input/eventX是什么类型的事件, cat /p ...

  3. linux输入子系统(input subsystem)之按键输入和LED控制

    实验现象:在控制台打印按键值,并且通过按键控制相应的LED亮灭. 1.代码 input_subsys_drv.c #include <linux/module.h> #include &l ...

  4. Python脚本控制的WebDriver 常用操作 <十二> send_keys模拟按键输入

    下面将使用WebDriver中的send_keys来模拟键盘按键输入 测试用例场景 send_keys方法可以模拟一些组合键操作: ctrl+a ctrl+c ctrl+v 等. 另外有时候我们需要在 ...

  5. 1102: 零起点学算法09——继续练习简单的输入和计算(a-b)

    1102: 零起点学算法09--继续练习简单的输入和计算(a-b) Time Limit: 1 Sec  Memory Limit: 520 MB   64bit IO Format: %lldSub ...

  6. 1101: 零起点学算法08——简单的输入和计算(a+b)

    1101: 零起点学算法08--简单的输入和计算(a+b) Time Limit: 1 Sec  Memory Limit: 128 MB   64bit IO Format: %lldSubmitt ...

  7. ADB——模拟手机按键输入

    基本命令 adb 模拟按键输入的命令主要通过 input 进行 Usage: input [<source>] <command> [<arg>...] The s ...

  8. adb命令模拟按键输入keycode

    adb命令模拟按键输入keycode 2017年05月18日 14:57:32 阅读数:1883 例子: //这条命令相当于按了设备的Backkey键 adb shell input keyevent ...

  9. adb shell命令模拟按键/输入input使用keycode 列表详解

    在adb shell里有一个非常使用的命令,模拟按键输入,这里首先不要理解为是键盘的模拟按键,下面命令的使用和键值做一个详解. input命令格式 adb shell input keyevent & ...

随机推荐

  1. vue-cli脚手架目录(2.0)

    vue-cli脚手架目录一览   最近在学习vue,看的稀里糊涂.今天从头开始,把cli配置的vue项目目录和配置文件搞清楚. 先看看整个项目目录结构: 再看看build文件夹下相关文件及目录: co ...

  2. SQL之开窗函数详解--可代替聚合函数使用

    在没学习开窗函数之前,我们都知道,用了分组之后,查询字段就只能是分组字段和聚合的字段,这带来了极大的不方便,有时我们查询时需要分组,又需要查询不分组的字段,每次都要又到子查询,这样显得sql语句复杂难 ...

  3. echarts-liquidfill 水球显示小数点

    使用echarts-liquidfill.js的水球,水球上显示的文字可以使用chartOption.series[0].label.normal.formatter设置,想显示什么显示什么. var ...

  4. 从零搭建Spring Cloud Gateway网关(二)—— 打印请求响应日志

    作为网关,日志记录是必不可少的功能,可以在网关出增加requestId来查询整个请求链的调用执行情况等等. 打印请求日志 打印请求日志最重要的就是打印请求参数这些东西,不过RequestBody通常情 ...

  5. 在Linux环境安装redis步骤,且设置开机自动启动redis

    最近在linux环境安装了redis学习,目前已经安装成功且设置开机即启动状态,我把步骤流程记录了下来,分享给需要的小伙伴. 1.我在/usr/local/localsoftware/目录下创建了一个 ...

  6. Natas22 Writeup(header重定向、burp截取抓包)

    Natas22: 打开页面是一个空白页面,查看源码,看起来好像是需要我们在url中添加“revelio”参数即可,然而实验了之后发现浏览器跳转回了原来的页面. 再次仔细审计源码,会看到页面开头有一个重 ...

  7. 如何区分前端BUG和后台BUG?

    测试工程师不只是负责发现问题,除了发现问题这种基本功外,定位问题,提出解决方案,提出预防方案也是要掌握的技能.这里先说定位问题的要求,定位问题要向深入,前提当然是对功能.产品的流程.开发方案.开发人员 ...

  8. 后端开发使用pycharm的技巧

    后端开发使用pycharm的技巧 目录 后端开发使用pycharm的技巧 1.使用说明 2.database 3.HTTP Client 1.使用说明 首先说明,本文所使用的功能为pycharm专业版 ...

  9. 【原创】(六)Linux进程调度-实时调度器

    背景 Read the fucking source code! --By 鲁迅 A picture is worth a thousand words. --By 高尔基 说明: Kernel版本: ...

  10. 动态规划-计数dp-Distinct Subsequences II

    2020-02-06 17:01:36 问题描述: 问题求解: 非常经典的计数dp问题,思路就是统计以每个字符为结尾的个数,最后求和即可. dp[i] = sum of (dp[j]) 0 <= ...