开发环境keil4,芯片STM32F103C8T6

1、main.c

//串口实验
#include "sys.h"
#include "delay.h"
#include "key.h"
#define DC12VDO_ON() GPIO_SetBits (GPIOC, GPIO_Pin_13)
#define DC12VDO_OFF() GPIO_ResetBits (GPIOC, GPIO_Pin_13) int Index1,Index2,Index3 = ;
int time1;
unsigned char gUart_Rece_Buf1[];
unsigned char gUart_Rece_Buf2[];
unsigned char gUart_Rece_Buf3[];
int i,j=;
u8 key;
int main(void)
{
delay_init(); //延时函数初始化
sys_Init(); //系统初始化(时钟初始化、中断初始化、GPIOx初始化、串口1初始化、串口2初始化、串口3初始化)
while()
{
DC12VDO_OFF();//led常亮
key=KEY_Scan();
if(key==)
{
DC12VDO_ON();//灭led
delay_ms();//等待
}
}
}

2、key.c

#include "key.h"
#include "delay.h"
#include "sys.h"
uint8_t K1_Value;
u8 KEY_Scan(void)
{
if(!GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0))
{
delay_ms(); //防抖
if(!GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0))
{
K1_Value=;
while(!GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0));
}
}
else K1_Value=;
return K1_Value;
}

3、delay.c

#include "delay.h"
#include "sys.h"
////////////////////////////////////////////////////////////////////////////////// static u8 fac_us=;//us延时倍乘数
static u16 fac_ms=;//ms延时倍乘数 void delay_init() { SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8
fac_us=SystemCoreClock/; //为系统时钟的1/8
fac_ms=(u16)fac_us*; //非OS下,代表每个ms需要的systick时钟数 } void delay_us(u32 nus)
{
u32 temp;
SysTick->LOAD=nus*fac_us; //时间加载
SysTick->VAL=0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(<<))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
} void delay_ms(u16 nms)
{
u32 temp;
SysTick->LOAD=(u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit)
SysTick->VAL =0x00; //清空计数器
SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数
do
{
temp=SysTick->CTRL;
}while((temp&0x01)&&!(temp&(<<))); //等待时间到达
SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器
SysTick->VAL =0X00; //清空计数器
}

4、sys.c

#include "sys.h"

/*******************************************************************************
* Function Name : RCC_Configuration
* Description : Configures the different system clocks.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;//HSEStartUpStatus是枚举函数的参数,两个参数ERROR = 0, SUCCESS = !ERROR
/* Setup the microcontroller system. Initialize the Embedded Flash Interface,
initialize the PLL and update the SystemFrequency variable. */
//SystemInit(); /* RCC system reset(for debug purpose) */
RCC_DeInit(); //初始化RCC /* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON); /* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp(); if(HSEStartUpStatus == SUCCESS)
{ /* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1); /* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1); /* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2); /* PLLCLK = 8MHz * 9 = 72 MHz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); /* Enable PLL */
RCC_PLLCmd(ENABLE); /* Wait till PLL is ready */
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
} /* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); /* Wait till PLL is used as system clock source */
while(RCC_GetSYSCLKSource() != 0x08)
{
}
} /* Enable GPIOx clock */
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC , ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB , ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA , ENABLE );
RCC_APB2PeriphClockCmd( RCC_APB2Periph_AFIO , ENABLE ); /* Enable USART1&2 clocks */
// Enable GPIOA clock
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE );
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE );
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE ); /* Enable USART3 clocks */
// Enable GPIOB clock
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE );
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE );
} /*******************************************************************************
* Function Name : GPIO_Configuration
* Description : Configures the different GPIO ports.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure; //--------------------------->PB0
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOC, &GPIO_InitStructure); //-------------------------USART1_TX-->PA9 , USART1_RX-->PA10
/* Configure USART1_Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure); /* Configure USART1_Rx as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure); //-------------------------USART2_TX-->PA2 , USART2_RX-->PA3
/* Configure USART2_Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure); /* Configure USART2_Rx as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure); //-------------------------USART3_TX-->PB10 , USART3_RX-->PB11
/* Configure USART3_Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure); /* Configure USART3_Rx as input floating */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); } /*******************************************************************************
* Function Name : NVIC_Configuration
* Description : Configures Vector Table base location.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
#define VECT_TAB_FLASH
//#define VECT_TAB_FLASH_IAP
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure; #if defined (VECT_TAB_RAM)
/* Set the Vector Table base location at 0x20000000 */
NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#elif defined(VECT_TAB_FLASH_IAP)
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x18000);
__set_FAULTMASK();//开放总中断
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
//__set_FAULTMASK(0);//开放总中断
#endif /* Configure the NVIC Preemption Priority Bits */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); /* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = ;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure); /* Enable the USART2 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = ;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the USART3 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = ;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
} /*******************************************************************************
* Function Name : USART1_Configuration
* Description : Configures USART1.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USART1_Configuration(void)
{
USART_InitTypeDef USART_InitStructure; /* USART1 configuration ------------------------------------------------------*/
/*
USART1 configured as follow:
- BaudRate = 9600 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
//USART_InitStructure.USART_Mode = USART_Mode_Rx; /* Configure the USART1 */
USART_Init(USART1, &USART_InitStructure); /* Enable USART1 Receive interrupt */
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); /* Enable the USART1 */
USART_Cmd(USART1, ENABLE); /* 如下语句解决第1个字节无法正确发送出去的问题 */
USART_ClearFlag(USART1, USART_FLAG_TC); // 清标志
} /*******************************************************************************
* Function Name : USART2_Configuration
* Description : Configures USART2.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USART2_Configuration(void)
{
USART_InitTypeDef USART_InitStructure; /* USART2 configuration ------------------------------------------------------*/
/*
USART2 configured as follow:
- BaudRate = 9600 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
//USART_InitStructure.USART_Mode = USART_Mode_Rx; /* Configure the USART2 */
USART_Init(USART2, &USART_InitStructure); /* Enable USART2 Receive interrupt */
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE); /* Enable the USART2 */
USART_Cmd(USART2, ENABLE); /* 如下语句解决第1个字节无法正确发送出去的问题 */
USART_ClearFlag(USART2, USART_FLAG_TC); // 清标志
} /*******************************************************************************
* Function Name : USART3_Configuration
* Description : Configures USART3.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void USART3_Configuration(void)
{
USART_InitTypeDef USART_InitStructure; /* USART3 configuration ------------------------------------------------------*/
/*
USART3 configured as follow:
- BaudRate = 9600 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
*/
USART_InitStructure.USART_BaudRate = ;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
//USART_InitStructure.USART_Mode = USART_Mode_Rx; /* Configure the USART3 */
USART_Init(USART3, &USART_InitStructure); /* Enable USART3 Receive interrupt */
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); /* Enable the USART3 */
USART_Cmd(USART3, ENABLE); /* 如下语句解决第1个字节无法正确发送出去的问题 */
USART_ClearFlag(USART3, USART_FLAG_TC); // 清标志
} //BSP初始化函数
void sys_Init(void)
{
RCC_Configuration();
NVIC_Configuration();
GPIO_Configuration();
USART1_Configuration();
USART2_Configuration();
USART3_Configuration();
} #ifdef DEBUG
/*******************************************************************************
* Function Name : assert_failed
* Description : Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* Input : - file: pointer to the source file name
* - line: assert_param error line source number
* Output : None
* Return : None
*******************************************************************************/
void assert_failed(u8* file, u32 line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */
while ()
{
}
}
#endif /******************* (C) COPYRIGHT 2008 STMicroelectronics *****END OF FILE****/

stm32:简单按键输入实现的更多相关文章

  1. STM32基本GPIO操作:按键输入(扫描+外部中断)

    (涉及专有名词较多,难免解释不到位,若有错误还请指出,谢谢!) 硬件连接图如下: 一.扫描 思路是在main函数中通过死循环来扫描端口电平状态检测,以此判断按键是否按下.实现较为简单. 1.初始化(注 ...

  2. linux下如何模拟按键输入和模拟鼠标【转】

    转自:http://www.cnblogs.com/leaven/archive/2010/11/30/1891947.html 查看/dev/input/eventX是什么类型的事件, cat /p ...

  3. linux输入子系统(input subsystem)之按键输入和LED控制

    实验现象:在控制台打印按键值,并且通过按键控制相应的LED亮灭. 1.代码 input_subsys_drv.c #include <linux/module.h> #include &l ...

  4. Python脚本控制的WebDriver 常用操作 <十二> send_keys模拟按键输入

    下面将使用WebDriver中的send_keys来模拟键盘按键输入 测试用例场景 send_keys方法可以模拟一些组合键操作: ctrl+a ctrl+c ctrl+v 等. 另外有时候我们需要在 ...

  5. 1102: 零起点学算法09——继续练习简单的输入和计算(a-b)

    1102: 零起点学算法09--继续练习简单的输入和计算(a-b) Time Limit: 1 Sec  Memory Limit: 520 MB   64bit IO Format: %lldSub ...

  6. 1101: 零起点学算法08——简单的输入和计算(a+b)

    1101: 零起点学算法08--简单的输入和计算(a+b) Time Limit: 1 Sec  Memory Limit: 128 MB   64bit IO Format: %lldSubmitt ...

  7. ADB——模拟手机按键输入

    基本命令 adb 模拟按键输入的命令主要通过 input 进行 Usage: input [<source>] <command> [<arg>...] The s ...

  8. adb命令模拟按键输入keycode

    adb命令模拟按键输入keycode 2017年05月18日 14:57:32 阅读数:1883 例子: //这条命令相当于按了设备的Backkey键 adb shell input keyevent ...

  9. adb shell命令模拟按键/输入input使用keycode 列表详解

    在adb shell里有一个非常使用的命令,模拟按键输入,这里首先不要理解为是键盘的模拟按键,下面命令的使用和键值做一个详解. input命令格式 adb shell input keyevent & ...

随机推荐

  1. sf-git机制

    为什么要专门写一篇关于sf科技公司的GIT管理机制呢?因为本周经历了两天的学习和考试,刚开始没在意,因为之前公司也用的GIT,所以没怎么看视频,就看了文档,练习考试时候才发现并非以前的那种git流程, ...

  2. deepin15.11安装N卡驱动,实测!!!(可解决N卡电脑关机卡屏)

    前言:deepin(深度)是一款由武汉深之度公司研发的一款适合国人日常学习的linux系统,其UI精美,美过Mac.它对于中国用户的一个亮点就是QQ微信等国软件傻瓜式安装(类似安卓应用商店安装),如果 ...

  3. WEB渗透 - SQL注入(持续更新)

    SQL注入 按变量类型分:数字型和字符型 按HTTP提交方式分:POST注入.GET注入和Cookie注入 按注入方式分:布尔注入.联合注入.多语句注入.报错注入.延时注入.内联注入 按数据库类型分: ...

  4. django 从零开始 4 404页面和500页面设置

    在视图函数中定义两个 函数 分别对应404 个500页面 (自定义html内容吧,这里只是展示) 在template页面指向自己定义的404.html和500.html页面 在项目的urls中设置 h ...

  5. 关于OSS不再维护的一些讨论

    FUSE for macOS 将不再维护 Fuse 是一款针对Mac OS的文件系统所开发的一款开源软件. 用于MacOS的FUSE软件包提供了多个API,用于为OS X 10.9至macOS 10. ...

  6. Redis05——Redis Cluster 如何实现分布式集群

    前面一片文章,我们已经说了Redis的主从集群及其哨兵模式.本文将继续介绍Redis的分布式集群. 在高并发场景下,单个Redis实例往往不能满足业务需求.单个Redis数据量过大会导致RDB文件过大 ...

  7. 数据挖掘入门系列教程(四点五)之Apriori算法

    目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联 ...

  8. 《JavaScript 模式》读书笔记(2)— 基本技巧2

    前一篇,简单介绍了一些js代码的基本技巧.那么这篇文章,我们继续后续的内容. 一.for循环 for循环经常用在遍历数组或者类数组对象,如引数(arguments)和HTML容器(HTMLCollti ...

  9. win10安装ubuntu子系统和图形界面

    子系统可以很方便的调用windows的文件(在/mnt里就有各个盘),也可以在windows里用VScode编辑linux的文件.还是很方便的.也可以切出去用QQ微信. 安装子系统参考教程:https ...

  10. 2019牛客多校第四场 A meeting

    链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...