DSL语法

概述

1.查看全表数据 —— DataFrame.show

2.查看部分字段数据(有4种方法)

 (1) DataFrame.select("字段名称").show

 (2) DataFrame.select($"字段名称").show(推荐)

 (3) DataFrame.select(col("字段名称")).show

 (4) DataFrame.select(DataFrame.col("字段名称")).show

如果要查询多个字段,方法一样,后面跟着添加字段即可

3.打印schema信息 —— DataFrame.printSchema

4.查询多个字段,并对其中一个字段的值做+1的操作 —— DataFrame.select($"字段名称1",$"字段名称2",$"字段名称2" + 1)

5.过滤,拿到想要的数据 —— DataFrame.filter(条件).show

6.数据分组并计数 —— DataFrame.groupBy("字段名称").count().show

实例操作

// 查询全表数据
scala> personDF.show
+---+--------+---+
| id| name|age|
+---+--------+---+
| 1|zhangsan| 20|
| 2| lisi| 29|
| 3| wangwu| 25|
| 4| zhaoliu| 30|
| 5| tianqi| 35|
| 6| kobe| 40|
+---+--------+---+
// 查询部分字段
// 方法一
scala> personDF.select(personDF.col("name")).show
+--------+
| name|
+--------+
|zhangsan|
| lisi|
| wangwu|
| zhaoliu|
| tianqi|
| kobe|
+--------+
//方法二
scala> personDF.select(col("name")).show
+--------+
| name|
+--------+
|zhangsan|
| lisi|
| wangwu|
| zhaoliu|
| tianqi|
| kobe|
+--------+
//方法三
scala> personDF.select($"name").show
+--------+
| name|
+--------+
|zhangsan|
| lisi|
| wangwu|
| zhaoliu|
| tianqi|
| kobe|
+--------+
//方法四
scala> personDF.select("name").show
+--------+
| name|
+--------+
|zhangsan|
| lisi|
| wangwu|
| zhaoliu|
| tianqi|
| kobe|
+--------+
// 打印schema信息
scala> personDF.printSchema
root
|-- id: integer (nullable = false)
|-- name: string (nullable = true)
|-- age: integer (nullable = false)
// 查询所有的name和age,并将age+1
scala> personDF.select($"name",$"age",$"age"+1).show
+--------+---+---------+
| name|age|(age + 1)|
+--------+---+---------+
|zhangsan| 20| 21|
| lisi| 29| 30|
| wangwu| 25| 26|
| zhaoliu| 30| 31|
| tianqi| 35| 36|
| kobe| 40| 41|
+--------+---+---------+
// 过滤age大于等于25的,使用filter方法过滤
scala> personDF.filter($"age" > 25).show
+---+-------+---+
| id| name|age|
+---+-------+---+
| 2| lisi| 29|
| 4|zhaoliu| 30|
| 5| tianqi| 35|
| 6| kobe| 40|
+---+-------+---+
// 按年龄进行分组并统计相同年龄的人数
scala> personDF.groupBy($"age").count.show
+---+-----+
|age|count|
+---+-----+
| 20| 1|
| 40| 1|
| 35| 1|
| 25| 1|
| 29| 1|
| 30| 1|
+---+-----+

SQL语法

概述

首先有一个必要的操作,就是把DataFrame注册成为一张table —— DataFrame.registerTmpTable("tbl_name")

然后用该格式填入sql语句即可 —— spark.sql("sql语句").show

实例操作

// 注册临时表
scala> personDF.registerTempTable("person")
warning: there was one deprecation warning; re-run with -deprecation for details
// 全表查询
scala> spark.sql("select * from person").show
+---+--------+---+
| id| name|age|
+---+--------+---+
| 1|zhangsan| 20|
| 2| lisi| 29|
| 3| wangwu| 25|
| 4| zhaoliu| 30|
| 5| tianqi| 35|
| 6| kobe| 40|
+---+--------+---+ // 以name和age分组,查询年龄大于25岁的数据
scala> spark.sql("select name,age from person where age > 25 group by name,age").show
+-------+---+
| name|age|
+-------+---+
| lisi| 29|
| kobe| 40|
|zhaoliu| 30|
| tianqi| 35|
+-------+---+

【Spark】DataFrame关于数据常用操作的更多相关文章

  1. python大规模数据处理技巧之一:数据常用操作

    面对读取上G的数据,python不能像做简单代码验证那样随意,必须考虑到相应的代码的实现形式将对效率的影响.如下所示,对pandas对象的行计数实现方式不同,运行的效率差别非常大.虽然时间看起来都微不 ...

  2. Spark中RDD的常用操作(Python)

    弹性分布式数据集(RDD) Spark是以RDD概念为中心运行的.RDD是一个容错的.可以被并行操作的元素集合.创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合:从外部存储系统中引用 ...

  3. Excel数据常用操作,vlookup,text,trim,数据格式导致出错

    数据有缺漏,需要在数据前面补零 =TEXT(F70,"000000") 前面是要操作的数据,后面是补几位 匹配数据(将一个表格中的数据进行匹配) =VLOOKUP(C2,aaa,4 ...

  4. Oracle数据常用操作

    将用逗号隔开字段拆分成两行: select * from mp_fs_file_info a,dm_process_upload b where instr(b.attachment,a.file_i ...

  5. Json数据常用操作

    JSON字符串: var str1 = '{ "name": "cs", "sex": "man" }'; JSON对象 ...

  6. 大数据学习day25------spark08-----1. 读取数据库的形式创建DataFrame 2. Parquet格式的数据源 3. Orc格式的数据源 4.spark_sql整合hive 5.在IDEA中编写spark程序(用来操作hive) 6. SQL风格和DSL风格以及RDD的形式计算连续登陆三天的用户

    1. 读取数据库的形式创建DataFrame DataFrameFromJDBC object DataFrameFromJDBC { def main(args: Array[String]): U ...

  7. spark dataframe操作集锦(提取前几行,合并,入库等)

    https://blog.csdn.net/sparkexpert/article/details/51042970 spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当 ...

  8. spark 学习_rdd常用操作

    [spark API 函数讲解 详细 ]https://www.iteblog.com/archives/1399#reduceByKey [重要API接口,全面 ] http://spark.apa ...

  9. spark DataFrame 常见操作

    spark dataframe派生于RDD类,但是提供了非常强大的数据操作功能.当然主要对类SQL的支持. 在实际工作中会遇到这样的情况,主要是会进行两个数据集的筛选.合并,重新入库. 首先加载数据集 ...

随机推荐

  1. linux下的信号量PV操作进阶之路

    一.同步和互斥机制 信号量 互斥锁 同步:指多个任务按照约定的先后次序相互配合来完成一件事情. 比如读线程等待写线程写完之后再去读. 二.信号量-P/V操作 P(s)含义: if(信号量>0) ...

  2. Daily Scrum 1/6/2015

    Process: Zhaoyang: Complete the speech API test and do some UI upgrade. Yandong: Help zhaoyang to do ...

  3. stand up meeting 12-10

    今天项目会议正好利用了大家上课前的十五分钟,大家对项目进度和项目中所遇到的问题进行了沟通. 由于天赋同学与重阳小组沟通及时有效,在mapping的过程中直接将单词本中的type与我们单词挑战中的que ...

  4. 原创hadoop2.6集群环境搭建

    三台机器: Hmaster 172.168.2.3.Hslave1 172.168.2.4.Hslave2 172.168.2.6 JDK:1.8.49 OS:red hat 5.4 64 (由于后期 ...

  5. 2016NOIP普及组T2回文日期

    回文日期 分类:枚举,函数 [题目描述] 日常生活中,通过年.月.日这三个要素可以表示出一个唯一确定的日期. 牛牛习惯用8位数字表示一个日期,其中,前4位代表年份,接下来2位代表月份,最后2位代表日期 ...

  6. 面试官:兄弟,说说Java到底是值传递还是引用传递

    二哥,好久没更新面试官系列的文章了啊,真的是把我等着急了,所以特意过来催催.我最近一段时间在找工作,能从二哥的文章中学到一点就多一点信心啊! 说句实在话,离读者 trust you 发给我这段信息已经 ...

  7. eclipse git 文件状态 及git分支的创建与合并与删除

    eclipse里面Git文件状态及图标展示   EGit会出现如下图标,其对应状态及意义如下:      1)忽略[ ignored ]:仓库认为该文件不存在(如bin目录,不需要关注).通过右键Te ...

  8. HBase Filter 过滤器概述

    abc 过滤器介绍 HBase过滤器是一套为完成一些较高级的需求所提供的API接口. 过滤器也被称为下推判断器(push-down predicates),支持把数据过滤标准从客户端下推到服务器,带有 ...

  9. PHP 语法字符串函数 strcmp、strlen 使用及实现

    说明 这里基于 php7.2.5 进行测试,php7 之后内部结构变化应该不是太大,但与 php5.X 有差别. 函数分类 用户自定义函数 say(); function say() { echo & ...

  10. 如何用Github钩子做自动部署

    最近机缘巧合的购置了域名和服务器,不用实在是浪费,再加上一直没有属于自己的个人网站,所以打算用hexo在服务器上玩一下,这样也就不用再纠结用Github pages还是Gitee pages了.当然, ...