「CH6202」黑暗城堡
「CH6202」黑暗城堡
传送门
这道题是要让我们求以点 \(1\) 为源点的最短路树的方案数。
我们先跑一遍最短路,然后考虑类似 \(\text{Prim}\) 的过程。
当我们把点 \(x\) 加入当前的生成树 \(T\) 中时,对于 \(\forall p \in T\) ,满足 \(dis_p = dis_x + (x, p)\) 那么就可以把这两个点相连,根据乘法原理,我们把每一步的方案数相乘就是最终的答案。
参考代码:
#include <algorithm>
#include <cstring>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 1010, __ = 5e5 + 5, p = 2147483647;
int n, m, d[_][_], dis[_], vis[_], tag[_];
struct node { int d, id; } t[_];
inline bool cmp(const node& x, const node& y) { return x.d < y.d; }
inline void Dijkstra() {
memset(dis, 0x3f, sizeof dis);
dis[1] = 0;
for (rg int o = 1; o <= n; ++o) {
int x = 0;
for (rg int i = 1; i <= n; ++i)
if (!vis[i] && dis[i] < dis[x]) x = i;
vis[x] = 1;
for (rg int i = 1; i <= n; ++i)
dis[i] = min(dis[i], dis[x] + d[x][i]);
}
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n), read(m);
memset(d, 0x3f, sizeof d);
for (rg int u, v, l; m--; )
read(u), read(v), read(l), d[u][v] = d[v][u] = l;
Dijkstra();
for (rg int i = 1; i <= n; ++i) t[i] = (node) { dis[i], i };
sort(t + 1, t + n + 1, cmp);
int ans = 1;
tag[1] = 1;
for (rg int i = 2; i <= n; ++i) {
int u = t[i].id, num = 0;
for (rg int j = 1; j <= n; ++j)
if (tag[j] && dis[u] == dis[j] + d[j][u]) ++num;
ans = 1ll * ans * num % p, tag[u] = 1;
}
printf("%d\n", ans);
return 0;
}
「CH6202」黑暗城堡的更多相关文章
- LOJ#10064. 「一本通 3.1 例 1」黑暗城堡
LOJ#10064. 「一本通 3.1 例 1」黑暗城堡 题目描述 你知道黑暗城堡有$N$个房间,$M$条可以制造的双向通道,以及每条通道的长度. 城堡是树形的并且满足下面的条件: 设$D_i$为如果 ...
- 「SHOI2016」黑暗前的幻想乡 解题报告
「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...
- 【题解】「P1504」积木城堡
这题是01背包(\(DP\)) 如何判断要拆走那个积木,首先定义一个\(ans\)数组,来存放这对积木能拼成多高的,然后如果\(ans_i = n\)那么就说明这个高度的积木可以. 话不多说,上代码! ...
- 【LOJ】#2027. 「SHOI2016」黑暗前的幻想乡
题解 我一开始写的最小表示法写的插头dp,愉快地TLE成60分 然后我觉得我就去看正解了! 发现是容斥 + 矩阵树定理 矩阵树定理对于有重边的图只要邻接矩阵的边数设置a[u][v]表示u,v之间有几条 ...
- 「SHOI2016」黑暗前的幻想乡
题目链接 戳我 \(Describe\) \(n−1\)个公司,每个公司能修一些边,求每条边都让不同的公司来修的生成树的方案数 \(Solution\) 这道题很明显容斥.答案就是:所有都选的生成树个 ...
- loj2027 「SHOI2016」黑暗前的幻想乡
矩阵树定理+模意义下整数高斯消元 #include <algorithm> #include <iostream> #include <cstring> #incl ...
- 「题解」黑暗塔 wizard
本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题意简述 给定 \(y\),求 \(\varphi(x)=y\) 中 \(x\) 的个数和最大值. \(1\leq y\leq 10 ...
- 【loj10064】黑暗城堡
#10064. 「一本通 3.1 例 1」黑暗城堡 内存限制:512 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 上传者: 1bentong 提交 ...
- 「NOI十联测」黑暗
「NOI十联测」黑暗 \(n\) 个点的无向图,每条边都可能存在,一个图的权值是连通块个数的 \(m\) 次方,求所有可能的图的权值和.(n≤30000,m≤15) 令\(ans[n][m]\)为n个 ...
随机推荐
- linux配置放火墙开放端口
vi /etc/sysconfig/iptables -A INPUT -m state –state NEW -m tcp -p tcp –dport 80 -j ACCEPT(允许80端口通过防火 ...
- layui数据表格固定头部和第一列、colspan合并列
刚看到原型图的时候,纳尼?不是跟我开玩笑吧,小女子资历尚浅,还真没做过像这样的功能,然后就是各种找度娘,可是都没有找到合适的,很多都是行合并,真的是头疼呀!再纠结是用VUE实现还是用layui实现好, ...
- 日期相关类data,simpledataformat类
(1) (2)
- C语言:将带头节点的单向链表结点域中的数据从小到大排序。-求出单向链表结点(不包括头节点)数据域中的最大值。-将M*N的二维数组中的数据,按行依次放入一维数组,
//函数fun功能是将带头节点的单向链表结点域中的数据从小到大排序. //相当于数组的冒泡排序. #include <stdio.h> #include <stdlib.h> ...
- Anniversary party POJ - 2342
题目链接 经典的树形dp,最大独立集,对于每个点就有2个状态,选/不选 设\(dp_{i,0}\)表示不选第i个,\(dp_{i,1}\)表示选第i个,容易得到其状态转移 \(dp_{i,0} = \ ...
- 【笔记8-Redis分布式锁】从0开始 独立完成企业级Java电商网站开发(服务端)
Redis分布式锁 Redis分布式锁命令 setnx当且仅当 key 不存在.若给定的 key 已经存在,则 setnx不做任何动作.setnx 是『set if not exists』(如果不存在 ...
- SpringBoot 配置 Redis 多缓存名(不同缓存名缓存失效时间不同)
import com.google.common.collect.ImmutableMap; import org.springframework.cache.CacheManager; import ...
- redis场景分析的很到位
链接:http://www.zhihu.com/question/19829601/answer/88069207来源:知乎 1. MySql+Memcached架构的问题 实际MySQL是适合进行海 ...
- Python爬虫教程:requests模拟登陆github
1. Cookie 介绍 HTTP 协议是无状态的.因此,若不借助其他手段,远程的服务器就无法知道以前和客户端做了哪些通信.Cookie 就是「其他手段」之一. Cookie 一个典型的应用场景,就是 ...
- 201771010135杨蓉庆《面向对象程序设计(java)》第六周学习总结
实验六 继承定义与使用 1.实验目的与要求 (1) 理解继承的定义: (2) 掌握子类的定义要求 (3) 掌握多态性的概念及用法: (4) 掌握抽象类的定义及用途: (5) 掌握类中4个成员访问权限修 ...