逻辑回归和sigmoid函数分类
逻辑回归和sigmoid函数分类:容易欠拟合,分类精度不高,计算代价小,易于理解和实现
sigmoid函数与阶跃函数的区别在于:阶跃函数从0到1的跳跃在sigmoid函数中是一个逐渐的变化,而不是突变。
logistic 回归分类器:在每个特征上乘以一个回归系数,然后将所有的结果值相加,将这个总和代入到sigmoid函数中,得到一个在0-1之间的数值,大于0.5分为1类,小于0.5分为0类。所以,逻辑回归也可以被看作是一种概率估计。
关键在于求最佳回归系数。
1、基于最优化方法的最佳回归系数确定
1)梯度上升算法:沿着该函数的梯度方向搜寻,该算法在到达每个点后都会重新估计移动的方向,循环迭代直到满足停止条件。
梯度下降算法:求解函数最小值。
#逻辑回归梯度上升优化算法
def loadDataSet():
dataMat = [];labelMat = []
fr = open('testset.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat def sigmoid(inX):
return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn,classLabels):
dataMatrix = mat(dataMatIn)
labelMat = mat(classLabels).transpose()
m,n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights =ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix * weights)
error = (labelMat -h)
weights = weights +alpha * dataMatrix.transpose() *error
return weights
alpha是向目标移动的步长,maxCycles是迭代次数。
2、分析数据:画出决策边界
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat = loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = [];ycord1 = []
xcord2 = [];ycord2 = []
for i in range(n):
if int(labelMat[i])==1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
fig =plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x = arange(-3.0,3.0,0.1)
y = arange(-weights[0] -weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('X1'); plt.ylabel('X2');
plt.show
逻辑回归和sigmoid函数分类的更多相关文章
- 大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5)
大白话5分钟带你走进人工智能-第二十节逻辑回归和Softmax多分类问题(5) 上一节中,我们讲 ...
- Logstic回归采用sigmoid函数的原因
##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: 、决策边界、逻辑回归代价函数、多分类与(逻辑回归和线性回归的)正则化
Classification It's not a good idea to use linear regression for classification problem. We can use ...
- [机器学习] Coursera ML笔记 - 逻辑回归(Logistic Regression)
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等.主要学习资料来自Standford Andrew N ...
- 通俗地说逻辑回归【Logistic regression】算法(一)
在说逻辑回归前,还是得提一提他的兄弟,线性回归.在某些地方,逻辑回归算法和线性回归算法是类似的.但它和线性回归最大的不同在于,逻辑回归是作用是分类的. 还记得之前说的吗,线性回归其实就是求出一条拟合空 ...
- stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...
- CS229笔记:分类与逻辑回归
逻辑回归 对于一个二分类(binary classification)问题,\(y \in \left\{0, 1\right\}\),如果直接用线性回归去预测,结果显然是非常不准确的,所以我们采用一 ...
随机推荐
- C++ 走向远洋——44(项目一、点—圆—圆柱类族的设计、派生类)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- jstack的使用
一.概述 有些时候我们需要查看下jvm中的线程执行情况,比如,发现服务器的CPU的负载突然增高了.出现了死锁.死循环等,我们该如何分析呢? 由于程序是正常运行的,没有任何的输出,从日志方面也看不出什么 ...
- pc端适配移动端
pc端和移动端共用一套代码 1. 允许网页宽度自动调整 在网页代码的头部,加入一行viewport元标签 <meta name="viewport" content=&quo ...
- PC端如何下载B站里面的视频?
此随笔只是记录一下: PC端下载B站的视频,在blibli前面加上一个i 然后在视频上鼠标右键,视频另存为+路径即可 PS:网上其他的方法,比如在blibli前面加上kan,后面加上jj等,这些方 ...
- Go module学习笔记
一 go module 常用命令 模块维护:go mod command arguments创建模块:go mod init example.com/hello清除无用依赖: go mod tidy ...
- springmvc.xml 中报错:Start state is missing. Add at least one state to the flow
最近一个学弟问我关于整合springMVC和spring出现的配置文件springmvc.xml出现的Start state is missing. Add at least one state to ...
- XCTF---easyjava的WriteUp
一.题目来源 题目来源:XCTF题库安卓区easyjava 题目下载链接:下载地址 二.解题过程 1.将该apk安装进夜神模拟器中,发现有一个输入框和一个按钮,随便输入信息,点 ...
- [每日一题系列] LeetCode 1071. 字符串的最大公因子
题目 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连接 1 次或多次)时,我们才认定 "T 能除尽 S". 返回最长字符串 X,要求满足 X 能除尽 ...
- idea新建springboot项目
不多说废话,直接进入正题,按照下面的步骤创建一个springboot项目一般不会出错,当然不排除可能会有一些脸黑的,不过应该问题不大. 第一步,如果你是在已有的项目里面,新建一个springboot项 ...
- win下安装virtualenv和创建django项目
一.由于一直在Linux环境下开发,想了解一下winPython开发环境: 1.打开cmd,pip install virtualenv 2.virtualenv test 由于这样需要进入到目录下才 ...