Link Analysis_1_Basic Elements
1. Edge Attributes
1.1 Methods of category
1.1.1 Basic three categories in terms of number of layers as edges or direction of edges:
import networkx as nx
G = nx.DiGraph() # 1.directed
G = nx.Graph() # 2.undirected
G = nx.MultiGraph() # 3.between two nodes many layers of relationships
1.1.2 Logical categories in terms of cluster characteristics, i.e., Bipartite:
from networkx.algorithms import bipartite
B = nx.Graph() # create an empty network first step, no subsets of nodes
B.add_nodes_from(['H', 'I', 'J', 'K', 'L'], bipartite = 0) # label 1 group
B.add_nodes_from([7, 8, 9, 10], bipartite = 1) # label 2
# add a list of edges at one time
B.add_edges_from([('H', 7), ('I', 7), ('J', 9),('K', 8), ('K', 10), ('L', 10)])
# Chect if bipartite or not
bipartite.is_bipartite(B)
Bipartite graph cannot contain a cycle of an odd number of nodes.
1.2 Edge can contain detailed features:
G.add_edge('A', 'B', weight = 6, relation = 'family', sign = '+')
G.remove_edge('A', 'B') # remove edge
1.3 Access edges:
G.edges() # list of all edges
G.edges(data = True) # list of all with attributes
G.edges(data = 'relation') # list with certain attribute
2. Node Attributes
2.1 Node be named as character.
G.add_node('A', name = 'Sophie')
G.add_node('B', name = 'Cumberbatch')
G.add_node('C', name = 'Miko') # pet dog
2.2 Access nodes:
G.node['A']['name']
3. Network Connectivity
3.1 Triadic Closure: Tendency for people who have shared connections to become connects, i.e., to cluster.
3.1.1 Local Clustering Coefficient
# local clustering only for multigraph type
G = nx.Graph()
G.add_edges_from([('A', 'K'),
('A', 'B'),
('A', 'C'),
('B', 'C'),
('B', 'K'),
('C', 'E'),
('C', 'F'),
('D', 'E'),
('E', 'F'),
('E', 'H'),
('F', 'G'),
('I', 'J')])
nx.clustering(G, 'A')
0.6666666666666666
Solve: 2 / [2 × 3 ÷ 2] # actual pairs / (C32)
3.1.2 Global Clustering Coefficient
# Method 1: Take average of all local clustering coefficients.
nx.average_clustering(G)
0.28787878787878785
# Method 2: Percent of open triads that are triangles in the network
# Triange: 3 nodes connected by 3 edges
# open triads: 3 nodes connected by 2 edges
# Transitivity = (3 * number of closed triads) / number of open triads
nx.transitivity(G)
0.4090909090909091
Method 2 put a larger weight on high degree nodes.
3.2 Distances
3.2.1 Singe Pair Pattern:
Find path and length of the shortest path between two nodes.
nx.shortest_path(G, 'A', 'H')
['A', 'C', 'E', 'H']
nx.shortest_path_length(G, 'A', 'H')
3
3.2.2 One Node to Every Others Pattern:
Breadth-first Search: discover nodes in layers step by step.
T = nx.bfs_tree(G, 'A')
T.edges() # to get the tree
OutEdgeView([('A', 'K'), ('A', 'B'), ('A', 'C'), ('C', 'E'), ('C', 'F'), ('E', 'D'), ('E', 'H'), ('F', 'G')])
nx.shortest_path_length(G, 'A') # get dictionary of distances from A to others
{'A': 0, 'K': 1, 'B': 1, 'C': 1, 'E': 2, 'F': 2, 'D': 3, 'H': 3, 'G': 3}
3.2.3 Measures of Distance Patterns
# Average of all
nx.average_shortest_path_length(G)
# Maximum distance
nx.diameter(G)
Eccentricity of a node is the largest distance between A and all others.
Radius is the minimum eccentricity.
Periphery is the set of nodes that have eccentricity equal to the diameter.
Center is the set of nodes with eccentricity equal to radius.
nx.eccentricity(G)
nx.radius(G)
nx.periphery(G)
nx.center(G)
3.2.4 Application
import numpy as np
import pandas as pd
%matplotlib notebook
# Instantiate the graph
G = nx.karate_club_graph()
nx.draw_networkx(G)
4. Connectivity
4.1 Connectivity in Undirected Graphs
# find number of communities (connected componets)
nx.number_connected_componets(G)
# give list of them
sorted(nx.connected_components(G))
# find the community to which 'M' belongs
nx.node_connected_components(G, 'M')
4.2 Connectivity in Directed Graphs
# find strongly connected component (directed path to every other nodes &
# no other node has directed path to this subset)
sorted(nx_strongly_connected_components(G))
5. Network Robustness
5.1 Definition: the ability for network to maintain general structural properties (connectivity) when faced with attacks (removal of edges or nodes).
# smallest number of nodes needed to disconnect
nx.node_connectivity(G_un)
# which nodes
nx.minimum_code_cut(G_un)
# smallest number of edges needed to disconnect
nx.edge_connectivity(G_un)
# which edges
nx.minimum_edge_cut(G_un)
5.2 Node Connectivity
# ways to deliver msg from 'G' to 'L'
sorted(nx.all_simple_paths(G, 'G', 'L'))
# want to block this path, how many nodes neeed to remove
nx.node_connectivity(G, 'G', 'L')
# which nodes
nx.minimum_node_cut(G, 'G', 'L')
5.3 Edge Connectivity
# how many
nx.edge_connectivity(G, 'G', 'L')
# show in details
nx.minimum_edge_cut(G, 'G', 'L')
6. Centrality
6.1 Degree Centrality
6.1.1 Undirected Network
G = nx.karate_club_graph()
G = nx.convert_node_labels_to_integers(G, first_label = 1)
degCent = nx.degree_centrality(G)
degCent[34]
0.5151515151515151
6.1.2 Directed Network
indegCent = nx.in_degree_centrality(G)
indegCent = nx.out_degree_centrality(G)
6.2 Closeness Centrality
6.2.1 Calculation: Shorter distance away from all other nodes.
closeCent = nx.closeness_centrality(G)
closeCent[34]
0.55
sum(nx.shortest_path_length(G, 34).values())
60
# Essence is equivalent to process below
(len(G.nodes()) - 1)/61
0.5409836065573771
6.2.2 Disconnceted Nodes Measurement
Method One
# choose non-normalizing, closeness centrality would be one
nx.closeness_centrality(G, normalized = False)
1
Method Two
# choose normalising,i.e. divide by (total nodes - 1)
nx.closeness_centrality(G, normalized = True)
0.071
6.3 Betweenness Centrality (computationally expensive)
Essence: Find nodes which shows up in many shortest paths between two nodes.
6.3.1 Method One: Use all 34 nodes in karate club
btwnCent = nx.betweenness_centrality(G,normalized = True, endpoints = False)
import operator
sorted(btwnCent.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.43763528138528146),
(34, 0.30407497594997596),
(33, 0.145247113997114),
(3, 0.14365680615680618),
(32, 0.13827561327561325)]
6.3.2 Method Two: Use 10 nodes as approximation
btwnCent_approx = nx.betweenness_centrality(G,normalized = True, endpoints = False, k = 10)
sorted(btwnCent_approx.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.3674031986531986),
(34, 0.3048388648388649),
(32, 0.17290028258778256),
(3, 0.13572044853294854),
(33, 0.130249518999519)]
6.3.3 Method Three: Specify subsets
btwnCent_subset = nx.betweenness_centrality_subset(G,
[34, 33, 21, 30, 16, 27, 15, 23, 10],
[1, 4, 13, 11, 6, 12, 17, 7],
normalized = True)
sorted(btwnCent_subset.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.04899515993265994),
(34, 0.028807419432419434),
(3, 0.018368205868205867),
(33, 0.01664712602212602),
(9, 0.014519450456950456)]
6.3.4 Method Four: Edges
btwnCent_edge = nx.edge_betweenness_centrality(G, normalized = True)
sorted(btwnCent_edge.items(), key = operator.itemgetter(1), reverse = True)[0:5]
# node 1 is the instructor of club
[((1, 32), 0.1272599949070537),
((1, 7), 0.07813428401663695),
((1, 6), 0.07813428401663694),
((1, 3), 0.0777876807288572),
((1, 9), 0.07423959482783014)]
btwnCent_edge_subset = nx.edge_betweenness_centrality_subset(G,
[34, 33, 21, 30, 16, 27, 15, 23, 10],
[1, 4, 13, 11, 6, 12, 17, 7],
normalized = True)
sorted(btwnCent_edge_subset.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[((1, 9), 0.01366536513595337),
((1, 32), 0.01366536513595337),
((14, 34), 0.012207509266332794),
((1, 3), 0.01211343123107829),
((1, 6), 0.012032085561497326)]
Link Analysis_1_Basic Elements的更多相关文章
- [.net 面向对象程序设计进阶] (11) 序列化(Serialization)(三) 通过接口 IXmlSerializable 实现XML序列化 及 通用XML类
[.net 面向对象程序设计进阶] (11) 序列化(Serialization)(三) 通过接口 IXmlSerializable 实现XML序列化 及 通用XML类 本节导读:本节主要介绍通过序列 ...
- [.net 面向对象程序设计进阶] (7) Lamda表达式(三) 表达式树高级应用
[.net 面向对象程序设计进阶] (7) Lamda表达式(三) 表达式树高级应用 本节导读:讨论了表达式树的定义和解析之后,我们知道了表达式树就是并非可执行代码,而是将表达式对象化后的数据结构.是 ...
- Skip list--reference wiki
In computer science, a skip list is a data structure that allows fast search within an ordered seque ...
- 基于jsoup的Java服务端http(s)代理程序-代理服务器Demo
亲爱的开发者朋友们,知道百度网址翻译么?他们为何能够翻译源网页呢,iframe可是不能跨域操作的哦,那么可以用代理实现.直接上代码: 本Demo基于MVC写的,灰常简单,copy过去,简单改改就可以用 ...
- Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第6节: 异线程回收对象
Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第六节: 异线程回收对象 异线程回收对象, 就是创建对象和回收对象不在同一条线程的情况下, 对象回收的逻辑 我 ...
- fullpage.js 具体使用方法
1.fullpage.js 下载地址 https://github.com/alvarotrigo/fullPage.js 2.fullPage.js 是一个基于 jQuery 的插件,它能够很方便 ...
- guestfs-python 手册
Help on module guestfs: NAME guestfs - Python bindings for libguestfs FILE /usr/lib64/python2.7/site ...
- Java爬取网易云音乐民谣并导入Excel分析
前言 考虑到这里有很多人没有接触过Java网络爬虫,所以我会从很基础的Jsoup分析HttpClient获取的网页讲起.了解这些东西可以直接看后面的"正式进入案例",跳过前面这些基 ...
- 由Reference展开的学习
在阅读Thinking in Java的Containers in depth一章中的Holding references时,提到了一个工具包java.lang.ref,说这是个为Java垃圾回收提供 ...
随机推荐
- Java中几种office文档转pdf的方式
最近公司要做office的文档,搜集了几种office文档转pdf的方式,简单的做下总结 我主要尝试了三种方式:openoffice,aspose,jacob 对他们进行了大文件,小文件,在linux ...
- Python数据分析之Numpy操作大全
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设 ...
- 201771010131-王之泰 实验一 软件工程准备—<通读《现代软件工程—构建之法》后所思所想>周学习总结
项目 内容 作业所属课程 https://www.cnblogs.com/nwnu-daizh/ 作业要求 https://www.cnblogs.com/nwnu-daizh/p/12369881. ...
- 第十六节:Linq用法大全(四)
1. OfType 获取集合中中指定类型元素. , , , , , "aaa", "bbb" }; int max = obj.OfType<int> ...
- JAVA GUI窗体及控件
Swing基本操作: JAVA显示一个带按钮的窗口: import java.awt.*; import javax.swing.*; import javax.swing.border.EmptyB ...
- stack的使用-Hdu 1062
Text Reverse Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tota ...
- CSRF预防手段
1 referer 验证 2 token 验证
- Python 之并发编程之线程上
一.线程概念 进程是资源分配的最小单位 线程是计算机中调度的最小单位 多线程(即多个控制线程)的概念是,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间,相当于一个车间内有多条流水线,都 ...
- linux 从一台机器复制文件到另一台linux机器上去
1.功能说明scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下.scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下:scp 远程用户 ...
- Python 正则表达式之 sub 和 subn函数的使用
re.sub() 函数的功能 re是reguler expressioin的缩写,表示正则表达式 sub 是 substitute 的缩写,表示替换: re.sub是个正则表达式方面的函数,用来实现通 ...