Link Analysis_1_Basic Elements
1. Edge Attributes
1.1 Methods of category
1.1.1 Basic three categories in terms of number of layers as edges or direction of edges:
import networkx as nx
G = nx.DiGraph() # 1.directed
G = nx.Graph() # 2.undirected
G = nx.MultiGraph() # 3.between two nodes many layers of relationships
1.1.2 Logical categories in terms of cluster characteristics, i.e., Bipartite:
from networkx.algorithms import bipartite
B = nx.Graph() # create an empty network first step, no subsets of nodes
B.add_nodes_from(['H', 'I', 'J', 'K', 'L'], bipartite = 0) # label 1 group
B.add_nodes_from([7, 8, 9, 10], bipartite = 1) # label 2
# add a list of edges at one time
B.add_edges_from([('H', 7), ('I', 7), ('J', 9),('K', 8), ('K', 10), ('L', 10)])
# Chect if bipartite or not
bipartite.is_bipartite(B)
Bipartite graph cannot contain a cycle of an odd number of nodes.
1.2 Edge can contain detailed features:
G.add_edge('A', 'B', weight = 6, relation = 'family', sign = '+')
G.remove_edge('A', 'B') # remove edge
1.3 Access edges:
G.edges() # list of all edges
G.edges(data = True) # list of all with attributes
G.edges(data = 'relation') # list with certain attribute
2. Node Attributes
2.1 Node be named as character.
G.add_node('A', name = 'Sophie')
G.add_node('B', name = 'Cumberbatch')
G.add_node('C', name = 'Miko') # pet dog
2.2 Access nodes:
G.node['A']['name']
3. Network Connectivity
3.1 Triadic Closure: Tendency for people who have shared connections to become connects, i.e., to cluster.
3.1.1 Local Clustering Coefficient
# local clustering only for multigraph type
G = nx.Graph()
G.add_edges_from([('A', 'K'),
('A', 'B'),
('A', 'C'),
('B', 'C'),
('B', 'K'),
('C', 'E'),
('C', 'F'),
('D', 'E'),
('E', 'F'),
('E', 'H'),
('F', 'G'),
('I', 'J')])
nx.clustering(G, 'A')
0.6666666666666666
Solve: 2 / [2 × 3 ÷ 2] # actual pairs / (C32)
3.1.2 Global Clustering Coefficient
# Method 1: Take average of all local clustering coefficients.
nx.average_clustering(G)
0.28787878787878785
# Method 2: Percent of open triads that are triangles in the network
# Triange: 3 nodes connected by 3 edges
# open triads: 3 nodes connected by 2 edges
# Transitivity = (3 * number of closed triads) / number of open triads
nx.transitivity(G)
0.4090909090909091
Method 2 put a larger weight on high degree nodes.
3.2 Distances
3.2.1 Singe Pair Pattern:
Find path and length of the shortest path between two nodes.
nx.shortest_path(G, 'A', 'H')
['A', 'C', 'E', 'H']
nx.shortest_path_length(G, 'A', 'H')
3
3.2.2 One Node to Every Others Pattern:
Breadth-first Search: discover nodes in layers step by step.
T = nx.bfs_tree(G, 'A')
T.edges() # to get the tree
OutEdgeView([('A', 'K'), ('A', 'B'), ('A', 'C'), ('C', 'E'), ('C', 'F'), ('E', 'D'), ('E', 'H'), ('F', 'G')])
nx.shortest_path_length(G, 'A') # get dictionary of distances from A to others
{'A': 0, 'K': 1, 'B': 1, 'C': 1, 'E': 2, 'F': 2, 'D': 3, 'H': 3, 'G': 3}
3.2.3 Measures of Distance Patterns
# Average of all
nx.average_shortest_path_length(G)
# Maximum distance
nx.diameter(G)
Eccentricity of a node is the largest distance between A and all others.
Radius is the minimum eccentricity.
Periphery is the set of nodes that have eccentricity equal to the diameter.
Center is the set of nodes with eccentricity equal to radius.
nx.eccentricity(G)
nx.radius(G)
nx.periphery(G)
nx.center(G)
3.2.4 Application
import numpy as np
import pandas as pd
%matplotlib notebook
# Instantiate the graph
G = nx.karate_club_graph()
nx.draw_networkx(G)
4. Connectivity
4.1 Connectivity in Undirected Graphs
# find number of communities (connected componets)
nx.number_connected_componets(G)
# give list of them
sorted(nx.connected_components(G))
# find the community to which 'M' belongs
nx.node_connected_components(G, 'M')
4.2 Connectivity in Directed Graphs
# find strongly connected component (directed path to every other nodes &
# no other node has directed path to this subset)
sorted(nx_strongly_connected_components(G))
5. Network Robustness
5.1 Definition: the ability for network to maintain general structural properties (connectivity) when faced with attacks (removal of edges or nodes).
# smallest number of nodes needed to disconnect
nx.node_connectivity(G_un)
# which nodes
nx.minimum_code_cut(G_un)
# smallest number of edges needed to disconnect
nx.edge_connectivity(G_un)
# which edges
nx.minimum_edge_cut(G_un)
5.2 Node Connectivity
# ways to deliver msg from 'G' to 'L'
sorted(nx.all_simple_paths(G, 'G', 'L'))
# want to block this path, how many nodes neeed to remove
nx.node_connectivity(G, 'G', 'L')
# which nodes
nx.minimum_node_cut(G, 'G', 'L')
5.3 Edge Connectivity
# how many
nx.edge_connectivity(G, 'G', 'L')
# show in details
nx.minimum_edge_cut(G, 'G', 'L')
6. Centrality
6.1 Degree Centrality
6.1.1 Undirected Network
G = nx.karate_club_graph()
G = nx.convert_node_labels_to_integers(G, first_label = 1)
degCent = nx.degree_centrality(G)
degCent[34]
0.5151515151515151
6.1.2 Directed Network
indegCent = nx.in_degree_centrality(G)
indegCent = nx.out_degree_centrality(G)
6.2 Closeness Centrality
6.2.1 Calculation: Shorter distance away from all other nodes.
closeCent = nx.closeness_centrality(G)
closeCent[34]
0.55
sum(nx.shortest_path_length(G, 34).values())
60
# Essence is equivalent to process below
(len(G.nodes()) - 1)/61
0.5409836065573771
6.2.2 Disconnceted Nodes Measurement
Method One
# choose non-normalizing, closeness centrality would be one
nx.closeness_centrality(G, normalized = False)
1
Method Two
# choose normalising,i.e. divide by (total nodes - 1)
nx.closeness_centrality(G, normalized = True)
0.071
6.3 Betweenness Centrality (computationally expensive)
Essence: Find nodes which shows up in many shortest paths between two nodes.
6.3.1 Method One: Use all 34 nodes in karate club
btwnCent = nx.betweenness_centrality(G,normalized = True, endpoints = False)
import operator
sorted(btwnCent.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.43763528138528146),
(34, 0.30407497594997596),
(33, 0.145247113997114),
(3, 0.14365680615680618),
(32, 0.13827561327561325)]
6.3.2 Method Two: Use 10 nodes as approximation
btwnCent_approx = nx.betweenness_centrality(G,normalized = True, endpoints = False, k = 10)
sorted(btwnCent_approx.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.3674031986531986),
(34, 0.3048388648388649),
(32, 0.17290028258778256),
(3, 0.13572044853294854),
(33, 0.130249518999519)]
6.3.3 Method Three: Specify subsets
btwnCent_subset = nx.betweenness_centrality_subset(G,
[34, 33, 21, 30, 16, 27, 15, 23, 10],
[1, 4, 13, 11, 6, 12, 17, 7],
normalized = True)
sorted(btwnCent_subset.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[(1, 0.04899515993265994),
(34, 0.028807419432419434),
(3, 0.018368205868205867),
(33, 0.01664712602212602),
(9, 0.014519450456950456)]
6.3.4 Method Four: Edges
btwnCent_edge = nx.edge_betweenness_centrality(G, normalized = True)
sorted(btwnCent_edge.items(), key = operator.itemgetter(1), reverse = True)[0:5]
# node 1 is the instructor of club
[((1, 32), 0.1272599949070537),
((1, 7), 0.07813428401663695),
((1, 6), 0.07813428401663694),
((1, 3), 0.0777876807288572),
((1, 9), 0.07423959482783014)]
btwnCent_edge_subset = nx.edge_betweenness_centrality_subset(G,
[34, 33, 21, 30, 16, 27, 15, 23, 10],
[1, 4, 13, 11, 6, 12, 17, 7],
normalized = True)
sorted(btwnCent_edge_subset.items(), key = operator.itemgetter(1), reverse = True)[0:5]
[((1, 9), 0.01366536513595337),
((1, 32), 0.01366536513595337),
((14, 34), 0.012207509266332794),
((1, 3), 0.01211343123107829),
((1, 6), 0.012032085561497326)]
Link Analysis_1_Basic Elements的更多相关文章
- [.net 面向对象程序设计进阶] (11) 序列化(Serialization)(三) 通过接口 IXmlSerializable 实现XML序列化 及 通用XML类
[.net 面向对象程序设计进阶] (11) 序列化(Serialization)(三) 通过接口 IXmlSerializable 实现XML序列化 及 通用XML类 本节导读:本节主要介绍通过序列 ...
- [.net 面向对象程序设计进阶] (7) Lamda表达式(三) 表达式树高级应用
[.net 面向对象程序设计进阶] (7) Lamda表达式(三) 表达式树高级应用 本节导读:讨论了表达式树的定义和解析之后,我们知道了表达式树就是并非可执行代码,而是将表达式对象化后的数据结构.是 ...
- Skip list--reference wiki
In computer science, a skip list is a data structure that allows fast search within an ordered seque ...
- 基于jsoup的Java服务端http(s)代理程序-代理服务器Demo
亲爱的开发者朋友们,知道百度网址翻译么?他们为何能够翻译源网页呢,iframe可是不能跨域操作的哦,那么可以用代理实现.直接上代码: 本Demo基于MVC写的,灰常简单,copy过去,简单改改就可以用 ...
- Netty源码分析第8章(高性能工具类FastThreadLocal和Recycler)---->第6节: 异线程回收对象
Netty源码分析第八章: 高性能工具类FastThreadLocal和Recycler 第六节: 异线程回收对象 异线程回收对象, 就是创建对象和回收对象不在同一条线程的情况下, 对象回收的逻辑 我 ...
- fullpage.js 具体使用方法
1.fullpage.js 下载地址 https://github.com/alvarotrigo/fullPage.js 2.fullPage.js 是一个基于 jQuery 的插件,它能够很方便 ...
- guestfs-python 手册
Help on module guestfs: NAME guestfs - Python bindings for libguestfs FILE /usr/lib64/python2.7/site ...
- Java爬取网易云音乐民谣并导入Excel分析
前言 考虑到这里有很多人没有接触过Java网络爬虫,所以我会从很基础的Jsoup分析HttpClient获取的网页讲起.了解这些东西可以直接看后面的"正式进入案例",跳过前面这些基 ...
- 由Reference展开的学习
在阅读Thinking in Java的Containers in depth一章中的Holding references时,提到了一个工具包java.lang.ref,说这是个为Java垃圾回收提供 ...
随机推荐
- java操作nginx
一,判断程序的部署环境是nginx还是windows /** * 判断操作系统是不是windows * * @return true:是win false:是Linux */ public stati ...
- 【PAT甲级】1059 Prime Factors (25 分)
题意: 输入一个正整数N(范围为long int),输出它等于哪些质数的乘积. trick: 如果N为1,直接输出1即可,数据点3存在这样的数据. 如果N本身是一个质数,直接输出它等于自己即可,数据点 ...
- Android 调用系统Email发送带多附件的邮件
转自:http://www.open-open.com/lib/view/open1347005126912.html 众所周知,在Android中调用其他程序进行相关处理,都是使用的Intent.当 ...
- C++11常用特性介绍——Lambda表达式
一.C++11采用配对的方括号[]来创建一个匿名函数并执行,如: #include <iostream> int main() { auto func = []{ std::cout &l ...
- 「Luogu P5368 [PKUSC2018]真实排名」
PKUSC签到题 题目大意 给出一个长度为 \(N\) 的序列,序列中有 \(K\) 个数会乘二,对于每个数计算在乘二后大于等于这个数的个数与乘二前没有发生变化的方案数. 分析 思路很清晰,可以将答案 ...
- PS进程及杀掉进程!
1.程序和进程的关系(1)程序 保存在硬盘.光盘等介质中的可执行代码和数据 静态保存的代码 (2)进程 在 CPU 及内存中运行的程序代码 动态执行的代码 父.子进程:每一个进程可以创建一个或多个进程 ...
- preg_replace相关问题
preg_replace preg_replace 函数执行一个正则表达式的搜索和替换. 语法: preg_replace ( mixed $pattern , mixed $replacement ...
- 3 JavaScript正则表达式
正则表达式:Regular(有规则的) Expression 正则表达式是由一个字符序列形成的搜索模式,可用于文本搜索和文本替换 常见于字符串的search和replace方法 var str = & ...
- Servlet 学习(四)
HTTP 响应的构成1.HTTP 响应行: 协议.状态.描述 HTTP 1.1 中定义的状态代码 100-199 是信息性代码,标示客户应该采取的其它动作 200-299 表示请求成功 300-399 ...
- Java基础 -5.3
方法的递归调用 指的是一个方法自己调用自己的情况,利用递归调用可以解决一些重复且麻烦的问题 在进行我们递归调用的时候一般要考虑如下几点问题 一定要设置方法递归调用的结束条件 每一次调用的过程之中一定要 ...