题面:
求n次整系数方程\(\sum_{i=1}^{n} a_ix^i = 0\)在区间\([1,m]\)上的整数

解法:

1.暴力

O(NM) 暴力枚举+解方程

2.假设只要求一个解

瞎搞做法

引入参数T,选取T的整数倍作为标志点,在两个标志点间用勘根

时间复杂度O(\frac{T}{M} \time T) , 取\(T = \sqrt{M}\)时最优

3.假设\(a_i\)很小

由整数方程解的性质,设该解为\(\frac{p}{q}\),可得

  • \(q|a_1\)
  • \(p|a_n\)
  • \(q|p\)

做法1: 枚举\(a_i\)的所有因子

做法2: 只用枚举a_1,a_n共有的所有质因子,降为\(O(log a_1)\)

那么总时间复杂度\(O(nloga_1+n)=O(nloga_1)\)

论 <解方程>的更多相关文章

  1. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  2. HDU 4793 Collision --解方程

    题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,v ...

  3. codevs3732==洛谷 解方程P2312 解方程

    P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 已知多项式方程: a ...

  4. [NOIP2014]解方程

    3732 解方程  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 输入描述 Input Descrip ...

  5. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  6. Ural 1046 Geometrical Dreams(解方程+计算几何)

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...

  7. 2017广东工业大学程序设计竞赛决赛 题解&源码(A,数学解方程,B,贪心博弈,C,递归,D,水,E,贪心,面试题,F,贪心,枚举,LCA,G,dp,记忆化搜索,H,思维题)

    心得: 这比赛真的是不要不要的,pending了一下午,也不知道对错,直接做过去就是了,也没有管太多! Problem A: 两只老虎 Description 来,我们先来放松下,听听儿歌,一起“唱” ...

  8. 5.5Python数据处理篇之Sympy系列(五)---解方程

    目录 目录 前言 (一)求解多元一次方程-solve() 1.说明: 2.源代码: 3.输出: (二)解线性方程组-linsolve() 1.说明: 2.源代码: 3.输出: (三)解非线性方程组-n ...

  9. python 解方程

    [怪毛匠子=整理] SymPy 库 安装 sudo pip install sympy x = Symbol('x') 解方程 solve([2 * x - y - 3, 3 * x + y - 7] ...

  10. python 解方程 和 python 距离公式实现

    解方程参考:https://zhuanlan.zhihu.com/p/24893371 缺点太慢,最后还是自己算了 距离公式参考:https://www.cnblogs.com/denny402/p/ ...

随机推荐

  1. Python 编写代码 检查是否遵循PEP 8标准

    实际上并非必须遵守PEP 8,但是它已经成为一个默认的.约定俗成的规则,可以使代码风格更统一,提高可读性. 由于最近一直在学习Ubuntu,因此此处仍然以Ubuntu为例,介绍一下规则检查工具,它能帮 ...

  2. java 循环节长度

    循环节长度 两个整数做除法,有时会产生循环小数,其循环部分称为:循环节. 比如,11/13=6=>0.846153846153- 其循环节为[846153] 共有6位. 下面的方法,可以求出循环 ...

  3. netty权威指南学习笔记八——编解码技术之JBoss Marshalling

    JBoss Marshalling 是一个java序列化包,对JDK默认的序列化框架进行了优化,但又保持跟java.io.Serializable接口的兼容,同时增加了一些可调参数和附加特性,这些参数 ...

  4. 快速进阶Vue3.0

    在2019.10.5日发布了Vue3.0预览版源码,但是预计最早需要等到 2020 年第一季度才有可能发布 3.0 正式版. 可以直接看 github源码. 新版Vue 3.0计划并已实现的主要架构改 ...

  5. 042-PHP使用闭包函数递归无限级分类

    <?php //使用闭包函数递归无限级分类 function demo($array){ # 用于存储递归后的队列 $data = []; # 递归函数 $func = function (&a ...

  6. php知识结构

    PHP的运行环境 连环境都搞不起来,就是你有多么喜欢PHP,那也是白搭,开始我们大多会使用集成环境软件例如xampp,wamp.随着知识的增加慢慢要学会自己搭建运行环境,例如 Linux(Ubuntu ...

  7. 如何为 .NET Core 安装本地化的 IntelliSense 文件

    在.Net Core 2.x 版本,Microsoft 官方没有提供 .Net Core 正式版的多语言安装包.因此,我们在用.Net Core 2.x 版本作为框架目标编写代码时,智能提成是英文的. ...

  8. Cheat Engine 入门操作

    Cheat Engine(简称CE,中文名-作弊引擎),用于查找.修改内存数据,是游戏逆向的基础工具. 本文仅介绍基础操作. 1.打开进程 运行游戏程序,并将CE附加到进程 2.寻找数据地址,并修改数 ...

  9. 超低功耗Sub-1GHz性价比首选方案:CMT2300

    关于超低功耗Sub-1GHz射频收发器,目前性价比方面CMT2300是一款大多客户的首选方案,不管是成本方面还是性能方面,都能大大的满足客户的需求.下面为大家讲解下CMT2300 这款Sub-1GHz ...

  10. web应用中并发控制的实现,各种锁的集合

    参考:http://blog.csdn.net/xiangwanpeng/article/details/55106732 B/S构架的应用越来越普及,但由于它有别于C/S构架的特殊性,并发控制始终没 ...