---恢复内容开始---

MAP是衡量object dectection算法的重要criteria,然而一直没有仔细阅读相关代码,今天就好好看一下:

1. 测试test过程是由FRCN/tools/test_net.py中调用的test_net()完成 #from model.test import test_net

test_net()定义在FRCN/lib/model/test.py (193-194行):调用了imdb.evaluate_detections

print('Evaluating detections')
imdb.evaluate_detections(all_boxes, output_dir)

imdb是从FRCN/lib/model/test.py(84行)传入的:

imdb = get_imdb(args.imdb_name)

from datasets.factory import get_imdb,为了了解如何定义一个imdb,我们去FRCN/lib/datasets/factory.py

 """Factory method for easily getting imdbs by name."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function __sets = {}
from datasets.pascal_voc import pascal_voc import numpy as np # Set up voc_<year>_<split>
for year in ['', '']:
for split in ['train', 'val', 'trainval', 'test']:
name = 'voc_{}_{}'.format(year, split)
__sets[name] = (lambda split=split, year=year: pascal_voc(split, year)) for year in ['', '']:
for split in ['train', 'val', 'trainval', 'test']:
name = 'voc_{}_{}_diff'.format(year, split)
__sets[name] = (lambda split=split, year=year: pascal_voc(split, year, use_diff=True)) def get_imdb(name):
"""Get an imdb (image database) by name."""
if name not in __sets:
raise KeyError('Unknown dataset: {}'.format(name))
return __sets[name]() def list_imdbs():
"""List all registered imdbs."""
return list(__sets.keys())

coco数据集的定义同pascal_voc. 可以看到,get_imdb(args.imdb_name)将会返回的就是pascal_voc(split, year)这样一个对象。

2. 来到pascal_voc.py :

 # --------------------------------------------------------
# Fast R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick and Xinlei Chen
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import os
from datasets.imdb import imdb
import datasets.ds_utils as ds_utils
import xml.etree.ElementTree as ET
import numpy as np
import scipy.sparse
import scipy.io as sio
import pickle
import subprocess
import uuid
from .voc_eval import voc_eval
from model.config import cfg class pascal_voc(imdb):
def __init__(self, image_set, year, use_diff=False):
name = 'voc_' + year + '_' + image_set
if use_diff:
name += '_diff'
imdb.__init__(self, name)
self._year = year
self._image_set = image_set
self._devkit_path = self._get_default_path()
self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year)
self._classes = ('__background__', # always index 0
'title', 'xlabel', 'ylabel')
#### 'text', 'ylabel')
# 'aeroplane', 'bicycle', 'bird', 'boat',
# 'bottle', 'bus', 'car', 'cat', 'chair',
# 'cow', 'diningtable', 'dog', 'horse',
# 'motorbike', 'person', 'pottedplant',
# 'sheep', 'sofa', 'train', 'tvmonitor')
self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes)))))
self._image_ext = '.jpg'
self._image_index = self._load_image_set_index()
# Default to roidb handler
self._roidb_handler = self.gt_roidb
self._salt = str(uuid.uuid4())
self._comp_id = 'comp4' # PASCAL specific config options
self.config = {'cleanup': True,
'use_salt': True,
'use_diff': use_diff,
'matlab_eval': False,
'rpn_file': None} assert os.path.exists(self._devkit_path), \
'VOCdevkit path does not exist: {}'.format(self._devkit_path)
assert os.path.exists(self._data_path), \
'Path does not exist: {}'.format(self._data_path) def image_path_at(self, i):
"""
Return the absolute path to image i in the image sequence.
"""
return self.image_path_from_index(self._image_index[i]) def image_path_from_index(self, index):
"""
Construct an image path from the image's "index" identifier.
"""
image_path = os.path.join(self._data_path, 'JPEGImages',
index + self._image_ext)
assert os.path.exists(image_path), \
'Path does not exist: {}'.format(image_path)
return image_path def _load_image_set_index(self):
"""
Load the indexes listed in this dataset's image set file.
"""
# Example path to image set file:
# self._devkit_path + /VOCdevkit2007/VOC2007/ImageSets/Main/val.txt
image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main',
self._image_set + '.txt')
assert os.path.exists(image_set_file), \
'Path does not exist: {}'.format(image_set_file)
with open(image_set_file) as f:
image_index = [x.strip() for x in f.readlines()]
return image_index def _get_default_path(self):
"""
Return the default path where PASCAL VOC is expected to be installed.
"""
return os.path.join(cfg.DATA_DIR, 'VOCdevkit' + self._year) def gt_roidb(self):
"""
Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls.
"""
cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
try:
roidb = pickle.load(fid)
except:
roidb = pickle.load(fid, encoding='bytes')
print('{} gt roidb loaded from {}'.format(self.name, cache_file))
return roidb gt_roidb = [self._load_pascal_annotation(index)
for index in self.image_index]
with open(cache_file, 'wb') as fid:
pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb def rpn_roidb(self):
if int(self._year) == 2007 or self._image_set != 'test':
gt_roidb = self.gt_roidb()
rpn_roidb = self._load_rpn_roidb(gt_roidb)
roidb = imdb.merge_roidbs(gt_roidb, rpn_roidb)
else:
roidb = self._load_rpn_roidb(None) return roidb def _load_rpn_roidb(self, gt_roidb):
filename = self.config['rpn_file']
print('loading {}'.format(filename))
assert os.path.exists(filename), \
'rpn data not found at: {}'.format(filename)
with open(filename, 'rb') as f:
box_list = pickle.load(f)
return self.create_roidb_from_box_list(box_list, gt_roidb) def _load_pascal_annotation(self, index):
"""
Load image and bounding boxes info from XML file in the PASCAL VOC
format.
"""
filename = os.path.join(self._data_path, 'Annotations', index + '.xml')
tree = ET.parse(filename)
objs = tree.findall('object')
if not self.config['use_diff']:
# Exclude the samples labeled as difficult
non_diff_objs = [
obj for obj in objs if int(obj.find('difficult').text) == 0]
# if len(non_diff_objs) != len(objs):
# print 'Removed {} difficult objects'.format(
# len(objs) - len(non_diff_objs))
objs = non_diff_objs
num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16)
gt_classes = np.zeros((num_objs), dtype=np.int32)
overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
# "Seg" area for pascal is just the box area
seg_areas = np.zeros((num_objs), dtype=np.float32) # Load object bounding boxes into a data frame.
for ix, obj in enumerate(objs):
bbox = obj.find('bndbox')
# Make pixel indexes 0-based
x1 = float(bbox.find('xmin').text) - 1
y1 = float(bbox.find('ymin').text) - 1
x2 = float(bbox.find('xmax').text) - 1
y2 = float(bbox.find('ymax').text) - 1
cls = self._class_to_ind[obj.find('name').text.lower().strip()]
boxes[ix, :] = [x1, y1, x2, y2]
gt_classes[ix] = cls
overlaps[ix, cls] = 1.0
seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1) overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes': boxes,
'gt_classes': gt_classes,
'gt_overlaps': overlaps,
'flipped': False,
'seg_areas': seg_areas} def _get_comp_id(self):
comp_id = (self._comp_id + '_' + self._salt if self.config['use_salt']
else self._comp_id)
return comp_id def _get_voc_results_file_template(self):
# VOCdevkit/results/VOC2007/Main/<comp_id>_det_test_aeroplane.txt
filename = self._get_comp_id() + '_det_' + self._image_set + '_{:s}.txt'
path = os.path.join(
self._devkit_path,
'results',
'VOC' + self._year,
'Main',
filename)
return path def _write_voc_results_file(self, all_boxes):
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print('Writing {} VOC results file'.format(cls))
filename = self._get_voc_results_file_template().format(cls)
with open(filename, 'wt') as f:
for im_ind, index in enumerate(self.image_index):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
# the VOCdevkit expects 1-based indices
for k in range(dets.shape[0]):
f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
format(index, dets[k, -1],
dets[k, 0] + 1, dets[k, 1] + 1,
dets[k, 2] + 1, dets[k, 3] + 1)) def _do_python_eval(self, output_dir='output'):
annopath = os.path.join(
self._devkit_path,
'VOC' + self._year,
'Annotations',
'{:s}.xml')
imagesetfile = os.path.join(
self._devkit_path,
'VOC' + self._year,
'ImageSets',
'Main',
self._image_set + '.txt')
cachedir = os.path.join(self._devkit_path, 'annotations_cache')
aps = []
# The PASCAL VOC metric changed in 2010
use_07_metric = True if int(self._year) < 2010 else False
print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
for i, cls in enumerate(self._classes):
if cls == '__background__':
continue
filename = self._get_voc_results_file_template().format(cls)
rec, prec, ap = voc_eval(
filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
use_07_metric=use_07_metric, use_diff=self.config['use_diff'])
aps += [ap]
print(('AP for {} = {:.4f}'.format(cls, ap)))
with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
print(('Mean AP = {:.4f}'.format(np.mean(aps))))
print('~~~~~~~~')
print('Results:')
for ap in aps:
print(('{:.3f}'.format(ap)))
print(('{:.3f}'.format(np.mean(aps))))
print('~~~~~~~~')
print('')
print('--------------------------------------------------------------')
print('Results computed with the **unofficial** Python eval code.')
print('Results should be very close to the official MATLAB eval code.')
print('Recompute with `./tools/reval.py --matlab ...` for your paper.')
print('-- Thanks, The Management')
print('--------------------------------------------------------------') def _do_matlab_eval(self, output_dir='output'):
print('-----------------------------------------------------')
print('Computing results with the official MATLAB eval code.')
print('-----------------------------------------------------')
path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets',
'VOCdevkit-matlab-wrapper')
cmd = 'cd {} && '.format(path)
cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB)
cmd += '-r "dbstop if error; '
cmd += 'voc_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \
.format(self._devkit_path, self._get_comp_id(),
self._image_set, output_dir)
print(('Running:\n{}'.format(cmd)))
status = subprocess.call(cmd, shell=True) def evaluate_detections(self, all_boxes, output_dir):
self._write_voc_results_file(all_boxes)
self._do_python_eval(output_dir)
if self.config['matlab_eval']:
self._do_matlab_eval(output_dir)
if self.config['cleanup']:
for cls in self._classes:
if cls == '__background__':
continue
filename = self._get_voc_results_file_template().format(cls)
os.remove(filename) def competition_mode(self, on):
if on:
self.config['use_salt'] = False
self.config['cleanup'] = False
else:
self.config['use_salt'] = True
self.config['cleanup'] = True if __name__ == '__main__':
from datasets.pascal_voc import pascal_voc d = pascal_voc('trainval', '')
res = d.roidb
from IPython import embed; embed()

我们先看涉及到MAP的方法,其他方法暂时放下。

这里通过evaluate_detections方法调用了_do_python_eval方法,后者通过调用voc_eval函数进行了AP和MAP的计算(245-247行)。

 # --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import xml.etree.ElementTree as ET
import os
import pickle
import numpy as np def parse_rec(filename):
""" Parse a PASCAL VOC xml file """
tree = ET.parse(filename)
objects = []
for obj in tree.findall('object'):
obj_struct = {}
obj_struct['name'] = obj.find('name').text
obj_struct['pose'] = obj.find('pose').text
obj_struct['truncated'] = int(obj.find('truncated').text)
obj_struct['difficult'] = int(obj.find('difficult').text)
bbox = obj.find('bndbox')
obj_struct['bbox'] = [int(float(bbox.find('xmin').text)),
int(float(bbox.find('ymin').text)),
int(float(bbox.find('xmax').text)),
int(float(bbox.find('ymax').text))]
objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False):
""" ap = voc_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
If use_07_metric is true, uses the
VOC 07 11 point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap def voc_eval(detpath,
annopath,
imagesetfile,
classname,
cachedir,
ovthresh=0.5,
use_07_metric=False,
use_diff=False):
"""rec, prec, ap = voc_eval(detpath,
annopath,
imagesetfile,
classname,
[ovthresh],
[use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections
detpath.format(classname) should produce the detection results file.
annopath: Path to annotations
annopath.format(imagename) should be the xml annotations file.
imagesetfile: Text file containing the list of images, one image per line.
classname: Category name (duh)
cachedir: Directory for caching the annotations
[ovthresh]: Overlap threshold (default = 0.5)
[use_07_metric]: Whether to use VOC07's 11 point AP computation
(default False)
"""
# assumes detections are in detpath.format(classname)
# assumes annotations are in annopath.format(imagename)
# assumes imagesetfile is a text file with each line an image name
# cachedir caches the annotations in a pickle file # first load gt
if not os.path.isdir(cachedir):
os.mkdir(cachedir)
cachefile = os.path.join(cachedir, '%s_annots.pkl' % imagesetfile)
# read list of images
with open(imagesetfile, 'r') as f:
lines = f.readlines()
imagenames = [x.strip() for x in lines] #test.txt中的所有标号 # load annotations
if not os.path.isfile(cachefile):
recs = {}
for i, imagename in enumerate(imagenames):
recs[imagename] = parse_rec(annopath.format(imagename))
if i % 100 == 0:
print('Reading annotation for {:d}/{:d}'.format(
i + 1, len(imagenames)))
# save
print('Saving cached annotations to {:s}'.format(cachefile))
with open(cachefile, 'wb') as f:
pickle.dump(recs, f)
else:
# load
with open(cachefile, 'rb') as f:
try:
recs = pickle.load(f)
except:
recs = pickle.load(f, encoding='bytes') # extract gt objects for this class
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'] == classname]
bbox = np.array([x['bbox'] for x in R])
if use_diff:
difficult = np.array([False for x in R]).astype(np.bool)
else:
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det} # read dets
detfile = detpath.format(classname)
with open(detfile, 'r') as f:
lines = f.readlines() splitlines = [x.strip().split(' ') for x in lines]
image_ids = [x[0] for x in splitlines]
confidence = np.array([float(x[1]) for x in splitlines])
BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd) if BB.shape[0] > 0:
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float) if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih # union
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps) if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1. # compute precision recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap

voc_eval(filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5, use_07_metric=use_07_metric, use_diff=self.config['use_diff'])

def voc_eval(detpath, annopath, imagesetfile, classname, cachedir, ovthresh=0.5, use_07_metric=False, use_diff=False):

filename: detpath: Path to detections 存储detection结果的pkl文件地址

annopath: 存储Annotations的地址

imagesetfile: 图片集的txt文档

classname: 当前的class

cachedir: 存储Annotations的pkl所在目录(可能不存在)

ovthresh=0.5: IoU的threshold,默认为0.5

use_07_metric=Flase: 是否使用2007PASCAL_VOC的MAP计算规则

use_diff=False: 是否考虑difficult的检测样本

经过一番数据处理,得到了:

BB: 当前class的所有proposal bbox (predicted)

image_ids: 当前imageset的所有image序号

class_recs: image所包含的当前class的bbox (GT)

   if BB.shape[0] > 0:
# sort by confidence
#'''
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
BB = BB[sorted_ind, :] # 现在的BB是按照conf降序排列的所有predicted bbox
image_ids = [image_ids[x] for x in sorted_ind] # image_id 是BB每组bbox所属于的image的序号 #''' # go down dets and mark TPs and FPs
for d in range(nd): #对所有proposal bbox 遍历
R = class_recs[image_ids[d]] # 找到当前bbox对应的image
bb = BB[d, :].astype(float) # bb 为当前proposal bbox的坐标
ovmax = -np.inf # 设置np极小值
BBGT = R['bbox'].astype(float) if BBGT.size > 0:
# compute overlaps
# intersection
ixmin = np.maximum(BBGT[:, 0], bb[0])
iymin = np.maximum(BBGT[:, 1], bb[1])
ixmax = np.minimum(BBGT[:, 2], bb[2])
iymax = np.minimum(BBGT[:, 3], bb[3])
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih # union
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
(BBGT[:, 2] - BBGT[:, 0] + 1.) *
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) overlaps = inters / uni
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
print(overlaps) if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]: #是否已经被检测过
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.

疑惑:

这里的Recall计算(voc_eval.py 208行)使用了:

rec = tp / float(npos),npos实际上是所有bbox-GT的数量,并不应该等于tp+fn吧?当且仅当:fn(包含但未被检测出bbox的image数量)==npos-tp(未被检测出的bbox数量)

ref: 1. https://datascience.stackexchange.com/questions/25119/how-to-calculate-map-for-detection-task-for-the-pascal-voc-challenge

2. http://mp.weixin.qq.com/s/FaNC9RppIhPf6T_qAz3Slg

3. https://ils.unc.edu/courses/2013_spring/inls509_001/lectures/10-EvaluationMetrics.pdf

4. https://stats.stackexchange.com/questions/260430/average-precision-in-object-detection/263758#263758

Pytorch-Faster-RCNN 中的 MAP 实现 (解析imdb.py 和 pascal_voc.py)的更多相关文章

  1. 对faster rcnn 中rpn层的理解

    1.介绍 图为faster rcnn的rpn层,接自conv5-3 图为faster rcnn 论文中关于RPN层的结构示意图 2 关于anchor: 一般是在最末层的 feature map 上再用 ...

  2. tensorflow object detection faster r-cnn 中keep_aspect_ratio_resizer是什么意思

    如果小伙伴的英语能力强可以直接阅读这里:https://stackoverflow.com/questions/45137835/what-the-impact-of-different-dimens ...

  3. Faster RCNN算法训练代码解析(3)

    四个层的forward函数分析: RoIDataLayer:读数据,随机打乱等 AnchorTargetLayer:输出所有anchors(这里分析这个) ProposalLayer:用产生的anch ...

  4. Domain Adaptive Faster R-CNN:经典域自适应目标检测算法,解决现实中痛点,代码开源 | CVPR2018

    论文从理论的角度出发,对目标检测的域自适应问题进行了深入的研究,基于H-divergence的对抗训练提出了DA Faster R-CNN,从图片级和实例级两种角度进行域对齐,并且加入一致性正则化来学 ...

  5. Faster RCNN代码理解(Python)

    转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...

  6. Faster RCNN 学习与实现

    论文 论文翻译 Faster R-CNN 主要分为两个部分: RPN(Region Proposal Network)生成高质量的 region proposal: Fast R-CNN 利用 reg ...

  7. Object Detection(RCNN, SPPNet, Fast RCNN, Faster RCNN, YOLO v1)

    RCNN -> SPPNet -> Fast-RCNN -> Faster-RCNN -> FPN YOLO v1-v3 Reference RCNN: Rich featur ...

  8. 实战 | 源码入门之Faster RCNN

    前言 学习深度学习和计算机视觉,特别是目标检测方向的学习者,一定听说过Faster Rcnn:在目标检测领域,Faster Rcnn表现出了极强的生命力,被大量的学习者学习,研究和工程应用.网上有很多 ...

  9. 【深度学习】目标检测算法总结(R-CNN、Fast R-CNN、Faster R-CNN、FPN、YOLO、SSD、RetinaNet)

    目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息.本文对目标检测进行了整体回顾,第一部分从RCNN开始介绍基于候选区域的目标检测器,包括F ...

随机推荐

  1. SQL Server带列名导出到Excel(Export to CSV with headers)的几个思路

    https://www.cnblogs.com/downmoon/archive/2012/05/04/2482995.html   SQL Server 2008中SQL应用系列及BI学习笔记系列- ...

  2. AS报错:Class kotlin.reflect.jvm.internal.FunctionCaller$FieldSetter can not access a member of class com.android.build.gradle.tasks.ManifestProcessorTask with modifiers "private"

    删除所有.gradle文件夹 失效缓存/重新启动

  3. Eclipse C++配置静态链接库和动态链接库

    转:https://blog.csdn.net/iteye_20658/article/details/82650699 1.动态库: 一.创建动态链接库1.创建工程new->project-& ...

  4. html标签的快捷

    https://www.jianshu.com/p/8f330e3571ee 一: <ul> <li><a href=""></a> ...

  5. ASA升级

    1.开启TFTP server,并且保证设备和TFTP server可达.2.上传镜像文件到ASA:ciscoasa# copy tftp: disk0: >>>>拷贝镜像到A ...

  6. 微信个人支付接口---YunGouOS 1.1.3 版本发布,新增个人微信/支付宝收款接口

    软件接口  https://www.oschina.net/news/113305/yungouos-1-1-3-released 文档说明  https://www.oschina.net/p/Yu ...

  7. 每天进步一点点------SOPC的Avalon-MM IP核(三) LCD1602 IP定制

    注:Avalon信号类型命名参考图 /********************************************************************************* ...

  8. jmeter实现服务器端后台接口性能测试

    实现目的 在进行服务器端后台接口性能测试时,需要连接到Linux服务器端,然后通过命令调用socket接口,这个过程就需要用到jmeter的SSH Command取样器实现了. 脚本实现 设置CSV ...

  9. 计算机二级-C语言-程序修改题-190108记录-字符串处理

    //程序修改题:给定程序MODI1.C中函数fun的功能是:先将字符串s中的字符按正序存放到t串中,然后把s中的字符按逆序连接到t串的后面.例如:当s中的字符串为:“ABCDE”时,则t中的字符串应为 ...

  10. 攻防世界 robots题

    来自攻防世界 robots [原理] robots.txt是搜索引擎中访问网站的时候要查看的第一个文件.当一个搜索蜘蛛访问一个站点时,它会首先检查该站点根目录下是否存在robots.txt,如果存在, ...