介绍

“The world’s best economies are directly linked to a culture of encouragement and positive feedback.”

你能猜到上面那句话是谁说的吗?这并不是某位总统或首相,当然也不是像Raghuram Rajan那样的顶尖经济学家说出来的。

这句话是由我们的机器产生的!是的,你没听错,这是一个在OpenAI的GPT-2框架上训练的自然语言处理(NLP)模型训练“说出”了这句话。所以你现在觉得机器学习的状态完全在另一个层次上了吗?

在NLP真正的黄金时代,OpenAI的GPT-2改变了我们处理文本数据的方式。ULMFiT和谷歌的BERT轻松地为NLP爱好者打开了大门,而GPT-2则打破了这一局面,使NLP任务(主要是文本生成)的工作变得更加容易。

在本文中,我们将使用GPT-2构建我们自己的文本生成器。

有没有一点小期待呢?让我们开始进入正文。我们将首先直观理解GPT-2,然后直接进入Python构建文本生成模型。

另外,如果你是一个狂热的NLP追随者,我想你会喜欢下面关于NLP最新发展的指南和教程:

8个优秀的预训练模型:

https://www.analyticsvidhya.com/blog/2019/03/pretrained-models-get-started-nlp/?utm_source=blog&utm_medium=openai-gpt2-text-generator-python

Transformers介绍:

https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/?utm_source=blog&utm_medium=openai-gpt2-text-generator-python

PyTorch-Transformers介绍:

https://www.analyticsvidhya.com/blog/2019/07/pytorch-transformers-nlp-python/?utm_source=blog&utm_medium=openai-gpt2-text-generator-python

StanfordNLP介绍:

https://www.analyticsvidhya.com/blog/2019/02/stanfordnlp-nlp-library-python/?utm_source=blog&utm_medium=openai-gpt2-text-generator-python

OpenAI的GPT-2框架有什么新特性?

自然语言处理(NLP)在过去的几年里以惊人的速度发展,机器现在能够理解句子背后的语境,当你思考这个问题时,你会发现这是一个真正具有里程碑意义的成就。

由OpenAI开发的GPT-2是一个预训练语言模型,我们可以使用它来完成各种NLP任务,比如:

语言模型(LM)是现代自然语言处理的重要任务之一。语言模型是预测文档中下一个单词或字符的概率模型。

GPT-2是OpenAI最初的NLP框架GPT的继承者,完整的GPT-2模型有15亿个参数,几乎是GPT参数的10倍。正如你可能已经猜到的那样,GPT-2给出了最先进的结果(稍后我们将会看到)。

这个预训练的模型包含了从Reddit的出站链接中收集的800万个网页的数据。让我们花一分钟来了解一下GPT-2是如何工作的。

架构

GPT-2的架构是基于谷歌在他们的论文“Attention is all you need”中提出的非常著名的Transformers概念。Transformers提供了一种基于编码器和解码器的机制来检测输入输出依赖关系。

在每个步骤中,模型在生成下一个输出时,将前面生成的符号作为额外的输入使用。

除了有更多的参数和Transformers层外,GPT-2只有少量架构修改:

"GPT-2在各种领域特定的语言建模任务上取得了最先进的成绩。我们的模型不是针对任何特定于这些任务的数据进行训练的,而是作为最终测试对它们进行评估,这就是所谓的zero-shot设置。当对相同的数据集进行评估时,GPT-2的性能优于针对领域特定数据集(如Wikipedia、news、books)训练的模型。"

                                  --OpenAI团队

训练了四种不同参数的模型,以适应不同的场景:

GPT-2能够基于小的输入语句生成整篇文章,这与早期的NLP模型形成了鲜明的对比,早期的NLP模型只能生成下一个单词,或者在一个句子中找到缺失的单词。

下面是GPT-2如何与其他类似的NLP模型进行比较:

如何配置GPT-2所需环境:

我们将使用具有3.45亿个参数的中型模型。你可以从官方的OpenAI GitHub存储库下载预培训的模型。

首先,我们需要通过输入下面的语句来克隆存储库(我建议使用Colab notebook而不是本地机器来加快计算速度):

!git clone https://github.com/openai/gpt-2.git//github.com/openai/gpt-2.git

注意,我们需要更改目录。为此,我们将使用os类的chdir():

import osos.chdir("gpt-2")
os.chdir("gpt-2")

接下来,选择我们所需要的模型。在本例中,我们将使用一个包含3.45亿个参数的中型模型。

这个模型需要使用GPU支持的TensorFlow来使它运行得更快。让我们在notebook上安装TensorFlow:

!pip3 install tensorflow-gpu==1.12.0

在进入建模部分之前,我们想要满足一些基本的需求。在克隆下来的文件夹中,你将找到一个文件- requirements.txt。文件包括以下四个库,这些库是这个模型必须要使用的:

安装所有这些库只需一行代码:

!pip3 install -r requirements.txtinstall -r requirements.txt

就是这样,我们都已经配置好的我们的环境。在我们进入构建文本生成器之前还需进行最后一步的操作,就是下载中型预训练模型!同样,我们可以用一行代码做到这一点:

!python3 download_model.py 345Mdownload_model.py 345M

根据你的网络带宽,这将花费一些时间。一旦下载完成了,我们需要用以下代码进行编码:

!export PYTHONIOENCODING=UTF-8

用Python实现GPT-2来构建我们自己的文本生成器

你准备好了吗?因为这是我们最终要实现的事情:使用GPT-2在Python中构建我们自己的高级文本生成器了!所以让我们开始吧。

首先,像之前一样使用chdir()移动到src文件夹:

os.chdir('src')

然后,导入所需的库:

import jsonimport osimport numpy as npimport tensorflow as tfimport model, sample, encoder
import os
import numpy as np
import tensorflow as tf
import model, sample, encoder

注意:model、sample和encoder是GPT-2文件夹的src子文件夹中出现的Python文件:

def interact_model(    model_name,    seed,    nsamples,    batch_size,    length,    temperature,    top_k,    models_dir):    models_dir = os.path.expanduser(os.path.expandvars(models_dir))    if batch_size is None:        batch_size = 1    assert nsamples % batch_size == 0    enc = encoder.get_encoder(model_name, models_dir)    hparams = model.default_hparams()    with open(os.path.join(models_dir, model_name, 'hparams.json')) as f:        hparams.override_from_dict(json.load(f))    if length is None:        length = hparams.n_ctx // 2    elif length > hparams.n_ctx:        raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx)    with tf.Session(graph=tf.Graph()) as sess:        context = tf.placeholder(tf.int32, [batch_size, None])        np.random.seed(seed)        tf.set_random_seed(seed)        output = sample.sample_sequence(            hparams=hparams, length=length,            context=context,            batch_size=batch_size,            temperature=temperature, top_k=top_k        )        saver = tf.train.Saver()        ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name))        saver.restore(sess, ckpt)        while True:            raw_text = input("Model prompt >>> ")            while not raw_text:                print('Prompt should not be empty!')                raw_text = input("Model prompt >>> ")            context_tokens = enc.encode(raw_text)            generated = 0            for _ in range(nsamples // batch_size):                out = sess.run(output, feed_dict={                    context: [context_tokens for _ in range(batch_size)]                })[:, len(context_tokens):]                for i in range(batch_size):                    generated += 1                    text = enc.decode(out[i])                    print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)                    print(text)            print("=" * 80)
    models_dir = os.path.expanduser(os.path.expandvars(models_dir))
    if batch_size is None:
        batch_size = 1
    assert nsamples % batch_size == 0     enc = encoder.get_encoder(model_name, models_dir)
    hparams = model.default_hparams()
    with open(os.path.join(models_dir, model_name, 'hparams.json')) as f:
        hparams.override_from_dict(json.load(f))     if length is None:
        length = hparams.n_ctx // 2
    elif length > hparams.n_ctx:
        raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx)     with tf.Session(graph=tf.Graph()) as sess:
        context = tf.placeholder(tf.int32, [batch_size, None])
        np.random.seed(seed)
        tf.set_random_seed(seed)
        output = sample.sample_sequence(
            hparams=hparams, length=length,
            context=context,
            batch_size=batch_size,
            temperature=temperature, top_k=top_k
        )         saver = tf.train.Saver()
        ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name))
        saver.restore(sess, ckpt)         while True:
            raw_text = input("Model prompt >>> ")
            while not raw_text:
                print('Prompt should not be empty!')
                raw_text = input("Model prompt >>> ")
            context_tokens = enc.encode(raw_text)
            generated = 0
            for _ in range(nsamples // batch_size):
                out = sess.run(output, feed_dict={
                    context: [context_tokens for _ in range(batch_size)]
                })[:, len(context_tokens):]
                for i in range(batch_size):
                    generated += 1
                    text = enc.decode(out[i])
                    print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
                    print(text)
            print("=" * 80)

让我们一个一个地来理解这些参数:

注意:要生成多个示例,你需要更改nsamples和batch_size的值,并且还必须保持它们相等

现在,是时候见证最先进的语言模型所产生的结果了。让我们运行这个函数并生成一些文本:

interact_model(    '345M',    None,    1,    1,    300,    1,    0,    '/content/gpt-2/models')'345M',
    None,
    1,
    1,
    300,
    1,
    0,
    '/content/gpt-2/models'
)

现在将要求你输入一个字符串。这是我所输入的内容:

I went to a lounge to celebrate my birthday andto celebrate my birthday and

而下面是GPT-2文本生成器的输出结果:

I called Donna and told her I had just adopted her. She thought my disclosure was a donation, but I’m not sure if Donna met the criteria. Donna was a genuinely sweet, talented woman who put her life here as a love story. I know she thanked me because I saw her from the photo gallery and she appreciated my outrage. It was most definitely not a gift. I appreciate that I was letting her care about kids, and that she saw something in me. I also didn’t have much choice but to let her know about her new engagement, although this doesn’t mean I wasn’t concerned, I am extremely thankful for all that she’s done to this country. When I saw it, I said, “Why haven’t you become like Betty or Linda?” “It’s our country’s baby and I can’t take this decision lightly.” “But don’t tell me you’re too impatient.” Donna wept and hugged me. She never expresses milk, otherwise I’d think sorry for her but sometimes they immediately see how much it’s meant to her. She apologized publicly and raised flagrant error of judgment in front of the society of hard choices to act which is appalling and didn’t grant my request for a birth certificate. Donna was highly emotional. I forgot that she is a scout. She literally didn’t do anything and she basically was her own surrogate owner. August 11, 2017 at 12:11 PM Anonymous said…

Incredible!当我第一次看到这个结果时,我无言以对。令人难以置信的细节处理水平和语法——几乎没法相信它完全是由一台机器生成的,难道不是吗?

你也可以继续操作输入其他句子,并在评论中分享你得到结果。

关于GPT-2潜在误用的说明

GPT-2因其可能的恶意使用而出现在新闻报导中。你可以想象这个NLP框架是多么强大。它很容易被用来生成假新闻,或者坦白地说,任何假文本,而人类无法意识到其中的区别

考虑到这些,OpenAI并没有发布完整的模型。相反,他们发布了一个小得多的模型。最初的模型是在40GB的互联网数据上训练的,有15亿个参数。OpenAI发布的两个示例模型有1.17亿个参数和3.45亿个参数。

结语

在本文中,我们使用了具有3.45亿参数的中型模型。这些小型的模型就能够产生如此令人印象深刻的结果,那想象一下一个包含15亿个参数的完整模型能产生什么,是不是觉得既可怕又刺激。

NLP的下一步是什么?我觉得我们不用等太久就能找到答案。

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

OpenAI的GPT-2:用Python构建世界上最先进的文本生成器的简单指南的更多相关文章

  1. Python第一天:你必须要知道的Python擅长领域以及各种重点学习框架(包含Python在世界上的应用)

    目录 Python5大擅长领域 WEB开发 网络编程 科学运算 GUI图形开发 运维自动化 Python在世界上的知名应用 国外 谷歌 CIA NASA YouTube Dropbox Instagr ...

  2. Git是目前世界上最先进的分布式版本控制系统

    一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 二:SVN与Git的最主要的区别? SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以 ...

  3. 时下世界上最先进的液晶面板技术---ips

    IPS是英文In-Plane Switching的缩写,英文含义为平面转换屏幕技术,由日立公司于2001推出的液晶面板技术,俗称“Super TFT”,是目前世界上最先进的液晶面板技术,目前已经广泛使 ...

  4. Git是目前世界上最先进的分布式版本控制系统(没有之一)。

    http://zhidao.baidu.com/link?url=NSYPiSvtGTMoqMA9vt68FRRF8WbfYVmwWeMh47_2lkp0K3jFMl--1Co1tg1R4VshTQV ...

  5. Hello Python!用 Python 写一个抓取 CSDN 博客文章的简单爬虫

    网络上一提到 Python,总会有一些不知道是黑还是粉的人大喊着:Python 是世界上最好的语言.最近利用业余时间体验了下 Python 语言,并写了个爬虫爬取我 csdn 上关注的几个大神的博客, ...

  6. 用Python构建你自己的推荐系统

    用Python构建你自己的推荐系统 现如今,网站用推荐系统为你提供个性化的体验,告诉你买啥,吃啥甚至你应该和谁交朋友.尽管每个人口味不同,但大体都适用这个套路.人们倾向于喜欢那些与自己喜欢的其他东西相 ...

  7. 使用OpenCV和Python构建自己的车辆检测模型

    概述 你对智慧城市的想法感到兴奋吗?如果是的话,你会喜欢这个关于建立你自己的车辆检测系统的教程的 在深入实现部分之前,我们将首先了解如何检测视频中的移动目标 我们将使用OpenCV和Python构建自 ...

  8. python构建bp神经网络_曲线拟合(一个隐藏层)__2.代码实现

    IDE:jupyter 抽象程度可能不是那么高,以后再优化. 理论和代码实现的差距还是挺大的 数据集请查看 python构建bp神经网络(一个隐藏层)__1.数据可视化 部分代码预览 git上传.ip ...

  9. 【311】Python 构建 ArcMap 标注表达式

    参考:构建标注表达式(官方帮助) 参考:计算字段示例(官方帮助) 说明:以上两者的方法略有不同,一个是通过字段表达式显示标注,一个通过字段计算新的字段,使用的工具方法也不同,前者通过 Layer.la ...

随机推荐

  1. Flink命令行提交job (源码分析)

    这篇文章主要介绍从命令行到任务在Driver端运行的过程 通过flink run 命令提交jar包运行程序 以yarn 模式提交任务命令类似于: flink run -m yarn-cluster X ...

  2. MySQL之单表多表查询

    #1.单表查询 #单表查询语法 select <字段1,字段2....> from <表名> where <表达式> group by field 分组 havin ...

  3. JVM性能优化

    java应用程序是应用在JVM上的,你们对JVM又有多少了解呢?JVM将内存分为三部分:NEW(年轻代).Tenured(年老代).Perm(永久代). (1)年轻代:用来存放java分配的新对象. ...

  4. Aajx

    # Ajax入门及基本开发 ## # Ajax的基本概念 >> 概念: 界面异步传输技术: 将几种技术和在一起进行开发的一种编程方式: >> 基本应用场景: > Goog ...

  5. 绕过Referer和Host检查

    1.我们在尝试抓取其他网站的数据接口时,某些接口需要经过请求头中的Host和Referer的检查,不是指定的host或referer将不予返回数据,且前端无法绕过这种检查 此时通过后端代理解决 在vu ...

  6. ajax+lazyload时lazyload失效问题及解决

    最近写公司的项目的时候遇到一个关于图片加载的问题,所做的页面是一个商城的商品列表页,其中需要显示商品图片,名称等信息,因为商品列表可能会很长,所以其中图片需要滑到可以显示的区域再进行加载. 首先我的图 ...

  7. Jessica's Reading Problem POJ - 3320

    Jessica's Reading Problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17562   Accep ...

  8. Flask 使用pycharm 创建项目,一个简单的web 搭建

    1:新建项目后 2:Flask web 项目重要的就是app 所有每个都需要app app=Flask(__name__)   3:Flask 的路径是有app.route('path')装饰决定, ...

  9. 在vue中实现锚点定位功能

    场景如下: 今天早上看到需求方新提的一个需求,这是一份网上答卷,点击题数要实现滚动到对应题目的位置: 注意点:每题题目的高度是不受控制的,你可以取到想跳转的index:(我再循环题目时做了index+ ...

  10. 学习 CSS 之用 CSS 3D 实现炫酷效果

    一.前言 把大象关进冰箱需要几步?三步,把冰箱门打开,把大象关进去,把冰箱门关上. 用 CSS 实现 3D 效果需几步?三步,设置透视效果 perspective,改变元素载体为 preserve-3 ...