tensorflow2.0学习笔记第一章第三节
1.3鸢尾花数据读入
# 从sklearn包datasets读入数据
from sklearn import datasets
from pandas import DataFrame
import pandas as pd x_data = datasets.load_iris().data # 加载特征
y_data = datasets.load_iris().target # 加载标签
print('x_data from datasets:\n',x_data)
print('y_data from datasets:\n',y_data) # columns为特征名称
x_data = DataFrame(x_data,columns=['花萼长度','花萼宽度','花瓣长度','花瓣宽度'])
pd.set_option('display.unicode.east_asian_width',True) #设置列名对其
print('x_data add index: \n',x_data)
x_data['类别'] = y_data # 新加一行标签为y_data print("x_data add a colunmn \n",x_data)
x_data from datasets:
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5. 3. 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5. 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5. 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4. 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1. ]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5. 2. 3.5 1. ]
[5.9 3. 4.2 1.5]
[6. 2.2 4. 1. ]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3. 4.5 1.5]
[5.8 2.7 4.1 1. ]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4. 1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3. 4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3. 5. 1.7]
[6. 2.9 4.5 1.5]
[5.7 2.6 3.5 1. ]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1. ]
[5.8 2.7 3.9 1.2]
[6. 2.7 5.1 1.6]
[5.4 3. 4.5 1.5]
[6. 3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3. 4.1 1.3]
[5.5 2.5 4. 1.3]
[5.5 2.6 4.4 1.2]
[6.1 3. 4.6 1.4]
[5.8 2.6 4. 1.2]
[5. 2.3 3.3 1. ]
[5.6 2.7 4.2 1.3]
[5.7 3. 4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3. 1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6. 2.5]
[5.8 2.7 5.1 1.9]
[7.1 3. 5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3. 5.8 2.2]
[7.6 3. 6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2. ]
[6.4 2.7 5.3 1.9]
[6.8 3. 5.5 2.1]
[5.7 2.5 5. 2. ]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3. 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6. 2.2 5. 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2. ]
[7.7 2.8 6.7 2. ]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6. 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3. 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3. 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2. ]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3. 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6. 3. 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
y_data from datasets:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
x_data add index:
花萼长度 花萼宽度 花瓣长度 花瓣宽度
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2
.. ... ... ... ...
145 6.7 3.0 5.2 2.3
146 6.3 2.5 5.0 1.9
147 6.5 3.0 5.2 2.0
148 6.2 3.4 5.4 2.3
149 5.9 3.0 5.1 1.8 [150 rows x 4 columns]
x_data add a colunmn
花萼长度 花萼宽度 花瓣长度 花瓣宽度 类别
0 5.1 3.5 1.4 0.2 0
1 4.9 3.0 1.4 0.2 0
2 4.7 3.2 1.3 0.2 0
3 4.6 3.1 1.5 0.2 0
4 5.0 3.6 1.4 0.2 0
.. ... ... ... ... ...
145 6.7 3.0 5.2 2.3 2
146 6.3 2.5 5.0 1.9 2
147 6.5 3.0 5.2 2.0 2
148 6.2 3.4 5.4 2.3 2
149 5.9 3.0 5.1 1.8 2 [150 rows x 5 columns]
tensorflow2.0学习笔记第一章第三节的更多相关文章
- tensorflow2.0学习笔记第一章第二节
1.2常用函数 本节目标:掌握在建立和操作神经网络过程中常用的函数 # 常用函数 import tensorflow as tf import numpy as np # 强制Tensor的数据类型转 ...
- tensorflow2.0学习笔记第一章第一节
一.简单的神经网络实现过程 1.1张量的生成 # 创建一个张量 #tf.constant(张量内容,dtpye=数据类型(可选)) import tensorflow as tf import num ...
- tensorflow2.0学习笔记第一章第四节
1.4神经网络实现鸢尾花分类 import tensorflow as tf from sklearn import datasets import pandas as pd import numpy ...
- tensorflow2.0学习笔记第二章第三节
2.3激活函数sigmoid函数 f(x)= 1/(1 + e^-x)tf.nn.sigmoid(x)特点:(1)求导后的数值在0-0.25之间,链式相乘之后容易使得值趋近于0,形成梯度消失 (2)输 ...
- tensorflow2.0学习笔记第一章第五节
1.5简单神经网络实现过程全览
- tensorflow2.0学习笔记第二章第一节
2.1预备知识 # 条件判断tf.where(条件语句,真返回A,假返回B) import tensorflow as tf a = tf.constant([1,2,3,1,1]) b = tf.c ...
- tensorflow2.0学习笔记第二章第二节
2.2复杂度和学习率 指数衰减学习率可以先用较大的学习率,快速得到较优解,然后逐步减少学习率,使得模型在训练后期稳定指数衰减学习率 = 初始学习率 * 学习率衰减率^(当前轮数/多少轮衰减一次) 空间 ...
- tensorflow2.0学习笔记第二章第四节
2.4损失函数损失函数(loss):预测值(y)与已知答案(y_)的差距 nn优化目标:loss最小->-mse -自定义 -ce(cross entropy)均方误差mse:MSE(y_,y) ...
- PRML学习笔记第一章
[转] PRML笔记 - 1.1介绍 模式识别的目标 自动从数据中发现潜在规律,以利用这些规律做后续操作,如数据分类等. 模型选择和参数调节 类似的一族规律通常可以以一种模型的形式为表达,选择合适模型 ...
随机推荐
- chrome "items hidden by filters"
今天更新chrome 后遇到console不能显示errors的问题,折腾一番后发现在console的Default levels中选择Default即可.
- 情人节闷在家里做画( 安卓统计图MPAndroidChart开发 )
有些时候觉得一个人挺好的,可以更自由安排自己的时间: 有些时候觉得有个人挺好的,很多事情一个人做起来太没意思了,纵使心中澎湃,倾听的独有自己. 废话少说,直接上图 MPAndroidChart是啥 一 ...
- easyui API
http://www.jeasyuicn.com/api/docTtml/index.htm
- SpringBoot_自动装配
SpringBoot SrpingBoot 给人的第一印象就是 简洁,易上手.它是自 Spring 而来为了简化我们开发的,而经历过了 Spring 中繁琐的配置文件,我确实很好奇它到底是怎么帮我们把 ...
- Fabric CA的部署与使用
Fabric CA是Hyperledger Fbric的证书认证中心,提供以下功能:用户信息的登记与注册,数字证书的颁发与管理. 前言 之前使用CA服务一直是在docker容器中运行下载好的CA镜像, ...
- 自定义reaml创建使用实现认证
注意清空shiro.ini 创建User对象 package cn.zys.Bean; public class User { private Integer id; private String u ...
- Spring_bean作用域
本篇介绍Spring Bean实例的作用范围,Spring Bean实例的作用范围由配置项scope限定.通过本篇的学习,可以达成如下目标. ● 应用scope配置项配置Bean的作用域 ● 应用单例 ...
- Typora Ubuntu 不显示 加粗
问题描述: Typora 在 Ubuntu18.04 上面不显示 Markdown 加粗语法 解决办法: 在 Typora's github.css 里面,将 body 修改为如下内容 body { ...
- Spring基础之AOP
一.AOP能解决什么问题 业务层每个service都要管理事务,在每个service中单独写事务,就会产生很多重复性的代码,而且修改事务时,需要修改源码,不利于维护.为此,把横向重复的代码,纵向抽取形 ...
- [SD心灵鸡汤]002.每月一则 - 2015.06
1.用最多的梦面对未来 2.自己要先看得起自己,别人才会看得起你 3.一个今天胜过两个明天 4.要铭记在心:每天都是一年中最美好的日子 5.乐观者在灾祸中看到机会:悲观者在机会中看到灾祸 6.有勇气并 ...