题意:求一段序列中删掉L个连续元素后的LIS。

解法:我的想法很复杂= =怎么说呢……首先用nlogn的方法求LIS得到的序列dp的第i项的意义为上升子序列所有长度为i的序列结尾元素的最小值,那么先倒着用nlogn的方法求一遍最长下降子序列记为dp1,记录每一步怎么更新的dp1,再正着求一遍最长上升子序列,每次看a[i]的时候二分的在i+k到结尾的dp1中找第一个比a[i]大的数设为dp1[pos],所以当前枚举的答案即为以a[i]作为结尾的最长上升子序列+后一段以dp1[pos]开头的最长上升子序列……枚举1~n-l,就可以得到答案了TUT……

总之很艰辛……二分废又得找队友帮忙手写二分什么的……

另一队的人提出用线段树算LIS……真·大神= =不懂怎么转移的方程……

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<string.h>
#include<math.h>
#include<limits.h>
#include<time.h>
#include<stdlib.h>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define LL long long
int inf = 1000000005;
using namespace std;
int a[100005];
LL dp1[100005], dp2[100005];
struct node
{
bool isnew;
int pos;
int pre;
}note[100005];
bool cmp(int a, int b)
{
return a > b;
}
template <class T>
int rupper_bound(T *a, T *end, T key) {
int n = end - a;
if(n == 0) return INT_MAX;
if (a[n-1] > key) return n-1;
if (a[0] <= key) return INT_MAX;
int l = 0, r = n - 1;
while(r - l > 1) {
int m = (l+r) >> 1;
if (a[m] > key) l = m;
else r = m;
}
return l;
}
int main()
{
int T;
scanf("%d", &T);
int cse = 1;
while(T--)
{
int n, l;
scanf("%d%d", &n, &l);
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]);
a[0] = -inf;
int max1 = 0, max2 = 0;
for(int i = n; i > l; i--)
{
int pos = upper_bound(dp1, dp1 + max1, a[i], cmp) - dp1;
if(pos == max1)
{
note[i].isnew = 1;
note[i].pos = max1;
dp1[max1++] = a[i];
}
else
{
note[i].isnew = 0;
note[i].pos = pos;
note[i].pre = dp1[pos];
dp1[pos] = a[i];
}
}
int ans = 0;
LL s = -inf;
int len = 0;
for(int i = 1; i <= n - l + 1; i++)
{
int pos = rupper_bound(dp1, dp1 + max1, s);
if(pos == INT_MAX) ans = max(ans, len);
else ans = max(ans, pos + 1 + len);
int x = upper_bound(dp2, dp2 + max2, a[i]) - dp2;
if(x == max2)
{
len = max2 + 1;
s = a[i];
dp2[max2++] = a[i];
}
else
{
len = x + 1;
s = a[i];
dp2[x] = a[i];
}
if(note[i + l].isnew)
{
max1--;
}
else
{
dp1[note[i + l].pos] = note[i + l].pre;
}
}
printf("Case #%d: %d\n", cse++, ans);
}
return 0;
}

  

HDU 5489 Removed Interval的更多相关文章

  1. 2015合肥网络赛 HDU 5489 Removed Interval LIS+线段树(树状数组)

    HDU 5489 Removed Interval 题意: 求序列中切掉连续的L长度后的最长上升序列 思路: 从前到后求一遍LIS,从后往前求一遍LDS,然后枚举切开的位置i,用线段树维护区间最大值, ...

  2. hdu 5489——Removed Interval——————【删除一段区间后的LIS】

    Removed Interval Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  3. HDU 5489 Removed Interval (LIS变形)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5489 给你n个数,要删去其中连续的L个,问你删去之后的LIS最大是多少? 我们先预处理出以i下标为开头 ...

  4. 【二分】【最长上升子序列】HDU 5489 Removed Interval (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5489 题目大意: 一个N(N<=100000)个数的序列,要从中去掉相邻的L个数(去掉整个区间 ...

  5. HDU 5489 Removed Interval (LIS,变形)

    题意: 给出一个n个元素的序列,要求从中删除任一段长度为L的连续子序列,问删除后的LIS是多少?(n<=10w, L<=n ,元素可能为负) 思路: 如果会O(nlogn)求普通LIS的算 ...

  6. HDU 5489 Removed Interval 2015 ACM/ICPC Asia Regional Hefei Online (LIS变形)

    定义f[i]表示以i为开头往后的最长上升子序列,d[i]表示以i为结尾的最长上升子序列. 先nlogn算出f[i], 从i-L开始枚举f[i],表示假设i在最终的LIS中,往[0,i-L)里找到满足a ...

  7. HDU 5489 Removed Interval DP 树状数组

    题意: 给一个长度为\(N\)的序列,要删除一段长为\(L\)的连续子序列,问所能得到的最长的\(LIS\)的长度. 分析: 设\(f(i)\)表示以\(a_i\)结尾的\(LIS\)的长度,设\(g ...

  8. LIS(变形) HDOJ 5489 Removed Interval

    题目传送门 题意:求删掉连续L长度后的LIS 分析:记rdp[i]表示以a[i]为开始的LIS长度,用nlogn的办法,二分查找-a[i].dp[i]表示以a[i]为结尾并且删去[i-L-1, i-1 ...

  9. Hdu 5489 合肥网络赛 1009 Removed Interval

    跳跃式LIS(nlogn),在普通的转移基础上增加一种可以跨越一段距离的转移,用一颗新的树状数组维护,同时,我们还要维护跨越完一次后面的转移,所以我用了3颗树状数组.. 比赛的时候一句话位置写错了,然 ...

随机推荐

  1. POJ 1979 Red and Black(水题,递归)

    一开始理解错题意了,以为是走过的砖不能再重复走,最多能走多少个黑砖,结果写的递归陷入死循环...后来才明白原来可以重复走,问可以到达的磁砖数. #include <iostream> #i ...

  2. 在C#中调用另一个应用程序或命令行(.exe 带参数)<zz>

    在.net中使用system.diaglostics.Process可以用来调用另一个命令行或程序. using   System.Diagnostics;     如果是dos     Proces ...

  3. HDU 4143 A Simple Problem(枚举)

    题目链接 题意 : 就是给你一个数n,让你输出能够满足y^2 = n +x^2这个等式的最小的x值. 思路 : 这个题大一的时候做过,但是不会,后来学长给讲了,然后昨天比赛的时候二师兄看了之后就敲了, ...

  4. C++ Primer笔记整理

    1. 迭代器:迭代器是一种对象,它可以看做是游标,用来遍历标准模板库中的部分或者全部元素. 每个迭代器指向容器中确定的地址,此外,迭代器还提供一些基本操作符:*.++.==.!=.=. 2. 模板:是 ...

  5. JTable单元格放自定义控件(一)-如何在JTable的单元格放JPanel

    原文链接:http://blog.sina.com.cn/s/blog_7f1c8c710101hdpf.html 最近自己尝试着模仿着实现一款非常有名的进销库存管理系统(智慧记)里面的一个功能.功能 ...

  6. Linux autoconf和automake使用

    作为Linux下的程序开发人员,一定都遇到过Makefile,用make命令来编译自己写的程序确实是很方便.一般情况下,大家都是手工写一个简单Makefile,如果要想写出一个符合自由软件惯例的Mak ...

  7. IntelliJ IDEA集成svn

    IntelliJ IDEA如何集成svn呢? 1. 首先配置下载并配置svn软件,推荐使用SlikSvn. 下载地址https://sliksvn.com/download/,下载最近版本

  8. Android LayoutInflater.inflate()的参数及其用法

    很多人在网上问LayoutInflater类的用法,以及inflate()方法参数的含义,现解释如下: inflate()的作用就是将一个用xml定义的布局文件查找出来,注意与findViewById ...

  9. Android Intent个人介绍

    在Android中要打开一个新的Activity, 不用说,肯定会用到Intent,Intent作为Android的四大组件之一,个人理解,Intent的作用就是用来在(其它三个不同组件)间进行通讯, ...

  10. 一个zip压缩类,欢迎吐槽

    package com.utils; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import j ...