题目:

Given a non-negative integer num, repeatedly add all its digits until the result has only one digit.

For example:

Given num = 38, the process is like: 3 + 8 = 111 + 1 = 2. Since 2 has only one digit, return it.

Follow up:
Could you do it without any loop/recursion in O(1) runtime?

Hint:

    1. A naive implementation of the above process is trivial. Could you come up with other methods?
    2. What are all the possible results?
    3. How do they occur, periodically or randomly?
    4. You may find this Wikipedia article useful.

链接: http://leetcode.com/problems/add-digits/

题解:

又是数学题,求digital root。循环叠加比较容易,但看了wiki以后发现了公式,还是用公式算吧。这种数学题对数学不好的我来说真是头大。原理10 % 9 或者 100 % 9都等于 1 % 9。举个例子n = abc = a  * 100 + b * 10 + c,那么 (a*100 + b * 10 + c) % 9 = (a + b + c) % 9。由此n == 0时,result = 0, n % 9 == 0时, 说明a + b + c = 9,我们返回9,对于其他数字, (a + b + c)等于res % 9。

Time Complexity - O(1), Space Complexity - O(1)

public class Solution {
public int addDigits(int num) {
return 1 + (num - 1) % 9;
}
}

二刷:

Java:

public class Solution {
public int addDigits(int num) {
return 1 + (num - 1) % 9;
}
}

三刷:

发现前两刷其实并没有完全理解,也许就是看了discuss区的答案而已。为什么(a + b + c) mod 9 = (abc) mod 9, 真正用到的公式是modulo运算的分配和结合律。

1.  (a + b) mod n  = ((a mod n) + (b mod n)) mod n

2.  (a * b) mod n = ((a mod n) * (b mod n)) mod n

假如一个数字的三位字符是abc,那么这个数等于 a * 100 + b * 10 + c, 根据分配律,  (a * 100) mod 9 = ((a mod 9) * (100 mod 9)) mod 9 = a mod 9,b和c同理, 所以 (a * 100 + b * 10 + c) mod 9 = (a + b + c) mod 9。  我们还可以使用一个小技巧,再用一次分配律直接用 (num - 1) mod 9 + 1来得到结果,这样可以避免一些边界条件的判断。

public class Solution {
public int addDigits(int num) {
if (num == 0) {
return 0;
}
int res = num % 9;
return res == 0 ? 9 : res;
}
}
public class Solution {
public int addDigits(int num) {
return 1 + (num - 1) % 9;
}
}

Update:

public class Solution {
public int addDigits(int num) {
if (num <= 0) return 0;
return (num % 9 == 0) ? 9 : num % 9;
}
}

Reference:

https://en.wikipedia.org/wiki/Digital_root

https://en.wikipedia.org/wiki/Modulo_operation

https://leetcode.com/discuss/67755/3-methods-for-python-with-explains

https://leetcode.com/discuss/52122/accepted-time-space-line-solution-with-detail-explanations

https://leetcode.com/discuss/55910/two-lines-c-code-with-explanation

258. Add Digits的更多相关文章

  1. 258. Add Digits(C++)

    258. Add Digits Given a non-negative integer num, repeatedly add all its digits until the result has ...

  2. LeetCode Javascript实现 258. Add Digits 104. Maximum Depth of Binary Tree 226. Invert Binary Tree

    258. Add Digits Digit root 数根问题 /** * @param {number} num * @return {number} */ var addDigits = func ...

  3. LN : leetcode 258 Add Digits

    lc 258 Add Digits lc 258 Add Digits Given a non-negative integer num, repeatedly add all its digits ...

  4. 【LeetCode】258. Add Digits (2 solutions)

    Add Digits Given a non-negative integer num, repeatedly add all its digits until the result has only ...

  5. LeetCode 258. Add Digits

    Problem: Given a non-negative integer num, repeatedly add all its digits until the result has only o ...

  6. (easy)LeetCode 258.Add Digits

    Given a non-negative integer num, repeatedly add all its digits until the result has only one digit. ...

  7. Java [Leetcode 258]Add Digits

    题目描述: Given a non-negative integer num, repeatedly add all its digits until the result has only one ...

  8. 【LeetCode】258. Add Digits

    题目: Given a non-negative integer num, repeatedly add all its digits until the result has only one di ...

  9. 【一天一道LeetCode】#258. Add Digits

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

随机推荐

  1. TCP连接,传输数据时的粘包问题讨论

    第一个需要讨论的大概就是粘包问题了.因为这个是TCP的个性问题,UDP通信时不存在这个问题的.首先看一下什么叫粘包: 客户端采取与服务器的长连接方式建立通信(Open-Write/Read-Write ...

  2. 浅谈 WPF布局

    我们首先来了解一下图形化用户界面(Graphic User Interface)也就是我们常常听到的GUI.举个简单的例子,同样是数据,我们可以用控制台程序加格式控制符等输出,但是这些都不如GUI来的 ...

  3. STM32普通定时器实现延时函数

    /* SystemFrequency / 1000 1ms中断一次 * SystemFrequency / 100000 10us中断一次 * SystemFrequency / 1000000 1u ...

  4. ServiceStack.OrmLite 调用存储过程

    最近在做关于ServiceStack.OrmLite调用存储过程时,有问题.发现ServiceStack.OrmLite不能调用存储过程,或者说不能实现我想要的需求.在做分页查询时,我需要传入参数传出 ...

  5. 深度分析 Java 的 ClassLoader 机制(源码级别)

    写在前面:Java中的所有类,必须被装载到jvm中才能运行,这个装载工作是由jvm中的类装载器完成的,类装载器所做的工作实质是把类文件从硬盘读取到内存中,JVM在加载类的时候,都是通过ClassLoa ...

  6. android 有时候stroke不起作用

    如下: <?xml version="1.0" encoding="utf-8"?> <selector xmlns:android=&quo ...

  7. socket编程实现HTTP请求

    利用c++语言+socket实现HTTP请求,请求获得的数据效果图如下: HTTP协议的下一层是TCP,根据HTTP协议只需要利用TCP发送下面的数据到达目标主机,目标主机就会发送相应的数据到客户端. ...

  8. tomcat内存溢出,设置

    tomcat/bin/catalina.bat里找到echo Using CATALINA_BASE:   "%CATALINA_BASE%" ,在上方设置:    set JAV ...

  9. MySQL 体系架构

    MySQL 体系架构 本篇文章是对mysql体系结构进行了详细的分析介绍,需要的朋友参考下 上面一图是mysql的概览图,我们从上往下看, 我们把上面一图一分为二,我们可以吧它分为两个部分, 1,是c ...

  10. 编写一个小程序,从标准输入读入一系列string对象,寻找连续重复出现的单词。程序应该找出满足一下条件的单词:该单词的后面紧接着再次出现自己本身。跟踪重复次数最多的单词及其重复次数,输出.

    // test13.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...