HDU-4694 Professor Tian 概率DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4649
题意:给一个位运算的表达式,每个运算符和其后的运算数有一定概率不计算,求最后表达式的期望。
因为只有20位,而且&,|,^都不会进位,那么一位一位地看,每一位不是0就是1,这样求出每一位是1的概率,再乘以该位的十进制数,累加,就得到了总体的期望。
对于每一位,状态转移方程如下:
f[i][j]表示该位取前i个数,运算得到j(0或1)的概率是多少。
f[i][1]=f[i-1][1]*p[i]+根据不同运算符和第i位的值运算得到1的概率。
f[i][0]同理。
//STATUS:C++_AC_0MS_248KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=;
const int INF=0x3f3f3f3f;
const int MOD= ,STA=;
const LL LNF=1LL<<;
const double EPS=1e-;
const double OO=1e30;
const int dx[]={-,,,};
const int dy[]={,,,-};
const int day[]={,,,,,,,,,,,,};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End #define get(a,k) ((a)&(1<<(k))?1:0) double f[N][],p[N];
int num[N],op[N];
int n; int main(){
// freopen("in.txt","r",stdin);
int ca=,i,j,k;
double ans;
char s[];
while(~scanf("%d",&n))
{
for(i=;i<=n;i++)
scanf("%d",&num[i]);
for(i=;i<=n;i++){
scanf("%s",s);
op[i]=(s[]=='&'?:(s[]=='|'?:));
}
for(i=;i<=n;i++)
scanf("%lf",&p[i]);
ans=;
for(k=;k<;k++){
f[][]=!get(num[],k);
f[][]=!f[][];
for(i=;i<=n;i++){
f[i][]=f[i-][]*p[i];
f[i][]=f[i-][]*p[i];
if(get(num[i],k)){
if(op[i]==){
f[i][]+=f[i-][]*(-p[i]);
f[i][]+=f[i-][]*(-p[i]);
}
else if(op[i]==)
f[i][]+=-p[i];
else {
f[i][]+=f[i-][]*(-p[i]);
f[i][]+=f[i-][]*(-p[i]);
}
}
else {
if(op[i]==)
f[i][]+=-p[i];
else {
f[i][]+=f[i-][]*(-p[i]);
f[i][]+=f[i-][]*(-p[i]);
}
}
}
ans+=f[n][]*(<<k);
} printf("Case %d:\n%.6lf\n",ca++,ans);
}
return ;
}
HDU-4694 Professor Tian 概率DP的更多相关文章
- HDU 4649 Professor Tian (概率DP)
Professor Tian Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)To ...
- HDU 4649 Professor Tian
Professor Tian Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) T ...
- HDU 4089 Activation(概率DP)(转)
11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况. 像概率dp,公式推出来就很容易写 ...
- HDU 4405 Aeroplane chess (概率DP)
题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i 这个位置到达 n ...
- hdu 4649 Professor Tian 多校联合训练的题
这题起初没读懂题意,悲剧啊,然后看了题解写完就AC了 题意是给一个N,然后给N+1个整数 接着给N个操作符(只有三种操作 即 或 ,与 ,和异或 | & ^ )这样依次把操作符插入整 ...
- HDU - 5001 Walk(概率dp+记忆化搜索)
Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...
- hdu 4649 Professor Tian 反状态压缩+概率DP
思路:反状态压缩——把数据转换成20位的01来进行运算 因为只有20位,而且&,|,^都不会进位,那么一位一位地看,每一位不是0就是1,这样求出每一位是1的概率,再乘以该位的十进制数,累加,就 ...
- HDU 4649 Professor Tian(概率DP)题解
题意:一个表达式,n + 1个数,n个操作,每个操作Oi和数Ai+1对应,给出每个操作Oi和数Ai+1消失的概率,给出最后表达式值得期望.只有| , ^,&三个位操作 思路:显然位操作只对当前 ...
- HDU 4649 Professor Tian(反状态压缩dp,概率)
本文出自 http://blog.csdn.net/shuangde800 题目链接:点击打开链接 题目大意 初始有一个数字A0, 然后给出A1,A2..An共n个数字,这n个数字每个数字分别有一 ...
随机推荐
- Sequel Pro 免费的MySQL管理客戶端(有SSH部分)
官方站點:http://www.sequelpro.com Sequel Pro 的原名是 CocoaMySQL,是一个与 phpMyAdmin 類似的 MySQL 管理工具.它是由 Cocoa 和面 ...
- strcat与strncat的C/C++实现
2013-07-05 15:47:19 本函数给出了几种strcat与strncat的实现,有ugly implementation,也有good implementation.并参考标准库中的imp ...
- TOP命令详解
TOP是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止该程序为止.比较准确的说,top命令提供了实时的对系统处理器的状态监视.它将显示系统中C ...
- [转] Android自动化测试之使用java调用monkeyrunner(五)
Android自动化测试之使用java调用monkeyrunner 众所周知,一般情况下我们使用android中的monkeyrunner进行自动化测试时,使用的是python语言来写测试脚本.不过, ...
- Android-xUtils框架介绍(四)
今天介绍xUtils的最后一个模块——HttpUtils,拖了那么久,终于要结束了.另外,码字不易,如果大家有什么疑问和见解,欢迎大家留言讨论.HttpUtils是解决日常工作过程中繁杂的上传下载文件 ...
- hdu 4642 Fliping game(博弈)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4642 题意:给定一个棋盘,0表示向下,1表示向上,选一个x,y, 然后翻转从x,y 到n,m.的所有硬币, ...
- extends:类似于java中的继承特征,extends="struts-default"
extends:类似于java中的继承特征,extends="struts-default"就是继承struts-default.xml,它里面定义了许多跳转类型.拦截器等一些常用 ...
- UVa 221 (STL 离散化) Urban Elevations
题意: 作图为n个建筑物的俯视图,右图为从南向北看的正视图,按从左往右的顺序输出可见建筑物的标号. 分析: 题中已经说了,要么x相同,要么x相差足够大,不会出现精度问题. 给这n个建筑物从左往右排序, ...
- hdu 3367 Pseudoforest
Pseudoforest Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) To ...
- 【转】iOS手势识别的详细使用(拖动,缩放,旋转,点击,手势依赖,自定义手势) -- 不错不错
原文网址:http://blog.csdn.net/totogo2010/article/details/8615940 1.UIGestureRecognizer介绍 手势识别在iOS上非常重要,手 ...