树套树


  Orz zyf神犇

  时光倒流……逆序处理,将删点改为加点,动态维护序列。

  由于是动态,要加点,所以用树状数组;同时又需要求序列中求比当前元素大/小的元素个数,所以要用平衡树。

  所以方法就是在树状数组的每个节点上维护一棵这个节点表示的区间的平衡树。

  为什么这样做是对的呢?因为求<k的元素个数这类操作满足区间加法,所以可以把多棵平衡树上的结果(一棵平衡树表示一个区间)加起来,就是整个区间的结果。

(我一开始想成带修改的区间第K大那种做法了……就是树状数组套权值线段树……sigh)

WA:ans[m+1]需要初始化,样例是因为只剩一个数所以逆序对数为0,但是其他数据明显不会是这样……

 /**************************************************************
Problem: 3295
User: Tunix
Language: C++
Result: Accepted
Time:8432 ms
Memory:122372 kb
****************************************************************/ //BZOJ 3295
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
#define CC(a,b) memset(a,b,sizeof(a))
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') sign=-; ch=getchar();}
while(isdigit(ch)) {v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,M=,INF=~0u>>;
const double eps=1e-;
typedef long long LL;
/*******************template********************/
int n,m,tot,l[M],r[M],s[M],rnd[M],w[M],v[M];
#define L l[x]
#define R r[x]
inline void Push_up(int x){
s[x]=s[L]+s[R]+w[x];
}
inline void zig(int &x){
int t=L; L=r[t]; r[t]=x; s[t]=s[x]; Push_up(x); x=t;
}
inline void zag(int &x){
int t=R; R=l[t]; l[t]=x; s[t]=s[x]; Push_up(x); x=t;
}
void ins(int &x,int num){
if (!x){
x=++tot; v[x]=num; s[x]=w[x]=; L=R=; rnd[x]=rand(); return;
}
s[x]++;
if (v[x]==num) w[x]++;
else if(num<v[x]){
ins(L,num); if(rnd[L]<rnd[x]) zig(x);
}else{
ins(R,num); if(rnd[R]<rnd[x]) zag(x);
}
}
int rank(int x,int num){//比x小的数有多少个
if (!x) return ;
if (v[x]==num) return s[L];
else if(num<v[x]) return rank(L,num);
else return s[L]+w[x]+rank(R,num);
}
#undef L
#undef R
/**********************Treap********************/
int rt[N];
int ss[N];
void update(int x,int y){
for(int i=x;i<=n;i+=i&-i) ins(rt[i],y);
}
LL getbig(int x,int val){
int t=;
for(int i=x;i;i-=i&-i)
t+=s[rt[i]]-rank(rt[i],val);
return t;
}
LL getsml(int x,int y,int val){
int t1=,t2=;
for(int i=x;i;i-=i&-i)
t1+=rank(rt[i],val);
for(int j=y;j;j-=j&-j)
t2+=rank(rt[j],val);
return t2-t1;
}
void add(int x){
for(int i=x;i<=n;i+=i&-i) ss[i]++;
}
LL sum(int x){
int ans=;
for(int i=x;i;i-=i&-i) ans+=ss[i];
return ans;
}
/*********************Fenwick*******************/
struct data{
int v,pos;
bool operator < (const data&b) const{
return v<b.v;
}
}a[N],b[N],d[N];
LL ans[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("input.txt","r",stdin);
// freopen("output.txt","w",stdout);
#endif
n=getint(); m=getint();
F(i,,n) a[i].v=getint(),a[i].pos=i,b[i]=a[i];
sort(b+,b+n+);
F(i,,m){
d[i].v=getint();
d[i].pos=b[d[i].v].pos;
}
F(i,,n) b[i]=a[i];
F(i,,m) b[d[i].pos].v=;
ans[m+]=; F(i,,n) if (b[i].v){
update(i,b[i].v);
ans[m+]+=sum(n)-sum(b[i].v);
add(b[i].v);
} D(i,m,){
ans[i]=ans[i+]+getbig(d[i].pos-,d[i].v)+getsml(d[i].pos,n,d[i].v);
update(d[i].pos,d[i].v);
}
F(i,,m) printf("%lld\n",ans[i]);
return ;
}

【BZOJ】【3295】【CQOI2011】动态逆序对的更多相关文章

  1. BZOJ 3295: [Cqoi2011]动态逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3865  Solved: 1298[Submit][Sta ...

  2. Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2886  Solved: 924[Submit][Stat ...

  3. bzoj 3295 [Cqoi2011]动态逆序对(cdq分治,BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3295 [题意] n个元素依次删除m个元素,求删除元素之前序列有多少个逆序对. [思路] ...

  4. 【刷题】BZOJ 3295 [Cqoi2011]动态逆序对

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  5. bzoj 3295: [Cqoi2011]动态逆序对(树套树 or CDQ分治)

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  6. BZOJ 3295: [Cqoi2011]动态逆序对 [CDQ分治]

    RT 传送门 首先可以看成倒着插入,求逆序对数 每个数分配时间(注意每个数都要一个时间)$t$,$x$位置,$y$数值 $CDQ(l,r)$时归并排序$x$ 然后用$[l,mid]$的加入更新$[mi ...

  7. BZOJ 3295 [CQOI2011]动态逆序对 (三维偏序CDQ+树状数组)

    题目大意: 题面传送门 还是一道三维偏序题 每次操作都可以看成这样一个三元组 $<x,w,t>$ ,操作的位置,权值,修改时间 一开始的序列看成n次插入操作 我们先求出不删除时的逆序对总数 ...

  8. BZOJ 3295 [Cqoi2011]动态逆序对 ——CDQ分治

    时间.位置.数字为三个属性. 排序时间,CDQ位置,树状数组处理数字即可. #include <cstdio> #include <cstring> #include < ...

  9. 【BZOJ 3295】动态逆序对 - 分块+树状数组

    题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...

  10. 【Bzoj 3295】 动态逆序对(树套树|CDQ分治)

    [题意] 每次删除一个数,然后问删除前逆序对数. [分析] 没有AC不开心.. 我的树状数组套字母树,应该是爆空间的,空间复杂度O(nlogn^2)啊..哭.. 然后就没有然后了,别人家的树套树是树状 ...

随机推荐

  1. iOS - 使用音乐的背景播放功能,使用MediaPlayer框架播放影片(Swift)

    1. 使用音乐的背景播放功能 (1) 导入音频播放框架 import AVFoundation (2) 创建音频播放对象 //初始化音频播放器对象,并将音频播放对象,作为视图控制器类的属相. var ...

  2. AMQ学习笔记 - 13. Spring-jms的配置

    概述 如何使用spring-jms来简化jms客户端的开发? 这篇文章主要记录如何配置以便以后复用,而非原理的讲解,有些内容我 没有掌握原理. producer端 producer端负责发送,这里使用 ...

  3. QThread多线程编程经典案例分析

    传统的图形界面应用程序都只有一个线程执行,并且一次执行一个操作.如果用户调用一个比较耗时的操作,就会冻结界面响应. 一个解决方法是按照事件处理的思路: 调用 Void QApplication::pr ...

  4. (转)Centos5.5安装MONO2.10.8和Jexus 5.0开启Linux平台.net应用新篇章

    注:本文只做本人记录使用,也可供大家参考,有兴趣的可以一起讨论. 安装步骤 1.yum –y update 2.安装Mono源码安装需要的库 yum -y install gcc gcc-c++ bi ...

  5. MYSQL基础02(查询)

    查询是很大的一块,所以这里我只会写mysql的特点,就我目前使用的情况,MYSQL对标准SQL是比较支持,如果是新手的话,建议去w3school 学习标准SQL. 1.DUAL DUAL是一个虚拟表, ...

  6. 15个web前端的美轮美奂的 jQuery 图片特效

    jQuery是一个非常优秀的 JavaScript 框架,使用简单灵活,同时还有许多成熟的插件可供选择.其中,jQuery 最令人印象深刻的应用之一就是对图片的处理,它可以让帮助你在你的项目中加入各种 ...

  7. JavaScript图片轮播器

    先贴上html的代码 <div class="ImgDiv"> <div class="Imgs" id="imgScroll&qu ...

  8. Template_17_metaprogram

    1,模板实例化机制是一种基本的递归语言机制,可以用于在编译期执行复杂计算.2,枚举值和静态常量在原来的C++编译器中,在类声明的内部,枚举值是声明"真常值"(常量表达式)的唯一方法 ...

  9. IEEE Floating Point Standard (IEEE754浮点数表示法标准)

    浮点数与定点数表示法是我们在计算机中常用的表示方法 所以必须要弄懂原理,特别是在FPGA里面,由于FPGA不能像在MCU一样直接用乘除法. 定点数 首先说一下简单的定点数,定点数是克服整数表示法不能表 ...

  10. Linux下mysql的安装和使用(C语言)

    1 mysql的安装 我使用的ubuntu在线安装,非常简单,命令为: sudo apt-get install mysql-client mysql-server 2 mysql命令集合 网络太多了 ...