View绘制详解(四),谝一谝layout过程
上篇博客我们介绍了View的测量过程,这只是View显示过程的第一步,第二步就是layout了,这个我们一般译作布局,其实就是在View测量完成之后根据View的大小,将其一个一个摆放在ViewGroup中的过程。OK,那我们今天就来聊聊这个过程。在本文之前我已经有过三篇博客来介绍View的绘制过程,那三篇文章有助于你理解本文:
2.View绘制详解(二),从setContentView谈起
OK,废话不多说,来看看今天的东东。本文主要包含如下几方面内容:
1.View中的layout
2.在ViewGroup中对View进行排列
3.以LinearLayout为例来看看layout过程
4.根布局的layout
1.View中的layout
要说layout过程,首先我们得先来看看View中的layout方法,如下:
public void layout(int l, int t, int r, int b) {
if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
} int oldL = mLeft;
int oldT = mTop;
int oldB = mBottom;
int oldR = mRight; boolean changed = isLayoutModeOptical(mParent) ?
setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b); if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
onLayout(changed, l, t, r, b);
mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED; ListenerInfo li = mListenerInfo;
if (li != null && li.mOnLayoutChangeListeners != null) {
ArrayList<OnLayoutChangeListener> listenersCopy =
(ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
int numListeners = listenersCopy.size();
for (int i = 0; i < numListeners; ++i) {
listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
}
}
} mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
}
View中有layout方法,就是对该View的摆放,该方法接收四个参数,这四个参数分别表示该View上下左右四个方向的位置。通过这四个参数来确定该View在它的父容器中的位置。首先在该方法的第12行,调用了setFrame方法将参数保存到mLeft、mTop、mRight、mBottom中(小伙伴们注意一般来说如果我们没有在xml文件中设置layoutMode属性,isLayoutModeOptical方法的返回值为false),在保存的同时调用了invalidate方法进行View的绘制。setFrame过程完成之后,接下来就是回调onLayout方法。View类中的onLayout方法只是一个空方法,里边并没有任何实现。关于onLayout方法的重点其实是在ViewGroup中。这个我们后面再述。一般来说,我们在自定义View的时候是没有必要重写layout或者onLayout方法的,只有自定义ViewGroup时才需要重写onLayout方法,这个时候再来看layout方法才会发现它的意义。说到这里小伙伴们可能会有另外一个疑问,那就是一个View的layout方法在什么时候调用,在哪里调用?其实,layout方法是在该View的父容器中调用 的,具体请看下一小节。
2.在ViewGroup中对View进行排列
我们都知道,ViewGroup继承自View,而ViewGroup也重写了View中的layout和onLayout方法,而且这里还有一点点变化,我们来看看ViewGroup中的这两个方法:
@Override
public final void layout(int l, int t, int r, int b) {
if (!mSuppressLayout && (mTransition == null || !mTransition.isChangingLayout())) {
if (mTransition != null) {
mTransition.layoutChange(this);
}
super.layout(l, t, r, b);
} else {
// record the fact that we noop'd it; request layout when transition finishes
mLayoutCalledWhileSuppressed = true;
}
} @Override
protected abstract void onLayout(boolean changed,
int l, int t, int r, int b);
首先ViewGroup中实现了layout方法,但是小伙伴们注意,这个时候layout方法已经变成了final类型的,表示该方法不可以再被ViewGroup的子类重写,那怎么办呢?首先第7行调用了父类的layout方法,也就是第一小节我们会看到的layout方法。其次,ViewGroup中也实现了onLayout方法,但是onLayout的修饰符变为了abstract,这个表示所有继承自ViewGroup的类都需要重写该方法。实际上,所有继承自ViewGroup的容器都重写了这个方法,如果我们自定义ViewGroup时也需要重写这个方法,这里我举一个简单的例子:
@Override
protected void onLayout(boolean changed, int l, int t, int r, int b) {
//获取容器中的控件(假设只有一个)
View view = getChildAt(0);
//设置该View上下左右四个点的坐标,对View进行摆放
view.layout(0, 0, 100, 100);
}
大致的思路就是这样,我们需要在onLayout中遍历所有的View,并计算每一个View的上下左右四个点的坐标,然后调用该View的layout方法进行摆放即可,摆放完成之后再调用onDraw方法进行绘制,绘制成功之后这个View就可以显示出来了。很简单吧。这里我们以LinearLayout为例来看看LinearLayout这个容器是如何遍历子控件并摆放的。
3.以LinearLayout为例来看看layout过程
这里我们以LinearLayout为例,来看看View到底是如何摆放在一个容器中的。因为我们说过,凡是继承自ViewGroup的类都是不能重写layout方法的,但是同时又必须重写onLayout方法,所以这里我们就先来看看LinearLayout的onLayout方法:
@Override
protected void onLayout(boolean changed, int l, int t, int r, int b) {
if (mOrientation == VERTICAL) {
layoutVertical(l, t, r, b);
} else {
layoutHorizontal(l, t, r, b);
}
}
这个方法倒是很简单,就是根据View的排列顺序来进行View的摆放,那么这里我就以竖直排列为例,我们来看看摆放的过程:
void layoutVertical(int left, int top, int right, int bottom) {
final int paddingLeft = mPaddingLeft; int childTop;
int childLeft; // Where right end of child should go
final int width = right - left;
int childRight = width - mPaddingRight; // Space available for child
//容器中子控件的可用宽度(父容器总宽度减去父容器的左右内边距)
int childSpace = width - paddingLeft - mPaddingRight;
//获取子控件总个数
final int count = getVirtualChildCount();
//获取父容器的Gravity
final int majorGravity = mGravity & Gravity.VERTICAL_GRAVITY_MASK;
final int minorGravity = mGravity & Gravity.RELATIVE_HORIZONTAL_GRAVITY_MASK;
//根据底部对齐、垂直居中、顶部对齐分别来计算控件顶部的起始位置
//注意mTotalLength参数是我们在上一篇博客中提到的LinearLayout测量时子View的总高度
switch (majorGravity) {
case Gravity.BOTTOM:
// mTotalLength contains the padding already
childTop = mPaddingTop + bottom - top - mTotalLength;
break; // mTotalLength contains the padding already
case Gravity.CENTER_VERTICAL:
childTop = mPaddingTop + (bottom - top - mTotalLength) / 2;
break; case Gravity.TOP:
default:
childTop = mPaddingTop;
break;
} for (int i = 0; i < count; i++) {
final View child = getVirtualChildAt(i);
if (child == null) {
childTop += measureNullChild(i);
} else if (child.getVisibility() != GONE) {
//获取子View的测量宽高
final int childWidth = child.getMeasuredWidth();
final int childHeight = child.getMeasuredHeight(); final LinearLayout.LayoutParams lp =
(LinearLayout.LayoutParams) child.getLayoutParams();
//从子控件的LayoutParams总获取gravity属性,但是这个gravity是指子View的android:layout_gravity属性而不是android:gravity属性
int gravity = lp.gravity;
if (gravity < 0) {
gravity = minorGravity;
}
final int layoutDirection = getLayoutDirection();
final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
//根据子控件的layout_gravity属性来计算子控件显示时的childLeft的值
switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
case Gravity.CENTER_HORIZONTAL:
childLeft = paddingLeft + ((childSpace - childWidth) / 2)
+ lp.leftMargin - lp.rightMargin;
break; case Gravity.RIGHT:
childLeft = childRight - childWidth - lp.rightMargin;
break; case Gravity.LEFT:
default:
childLeft = paddingLeft + lp.leftMargin;
break;
} if (hasDividerBeforeChildAt(i)) {
childTop += mDividerHeight;
}
//子控件上面的位置再加上上边距
childTop += lp.topMargin;
//该方法中实际上调用了layout方法进行控件的摆放
setChildFrame(child, childLeft, childTop + getLocationOffset(child),
childWidth, childHeight);
//对于下一个控件而言,它的起始高度是已经摆放好的View的高度之和
childTop += childHeight + lp.bottomMargin + getNextLocationOffset(child); i += getChildrenSkipCount(child, i);
}
}
}
这个方法的整体过程可以分为两步,第一步,根据容器的android:gravity属性来计算第一个子控件的顶部起始坐标,第二步,遍历所有子View,根据子控件的android:layout_gravity属性来计算子控件左边的坐标(这个时候小伙伴们应该明白了,为什么当我的LinearLayout的排列方向设置为垂直之后,LinearLayout的子控件的layout_gravity属性设置为垂直居中会没有效果),计算出来之后,再算出子控件顶部的坐标,然后调用setChildFrame方法对子控件进行摆放。setChildFrame方法内部也是调用了layout方法来进行控件的摆放,如下:
private void setChildFrame(View child, int left, int top, int width, int height) {
child.layout(left, top, left + width, top + height);
}
如此,我们的子控件就成功的在容器中摆放出来了。
说到这里,小伙伴们应该明白了,其实每一个控件包括容器都是在它的父容器中进行摆放的,那么这个时候小伙伴们可能会有另外一个疑问,那么我们的控件总有一个是没有父容器的,就是那个DecorView,那么DecorView又是在哪里进行摆放的呢?请看下文。
4.根布局的layout
OK,控件摆放还剩一个小问题,就是DecorView是在哪里摆放?其实和我们之前说的DecorView是在哪里进行测量是同一个问题,对于这个问题,我们还是得回到ViewRootImpl中去寻找答案。我们都知道View绘制过程的启动是从performTraversals方法开始的,在这个方法中系统首先进行了View的测量,然后调用了performLayout方法进行View的摆放,performLayout中又调用了layout方法来进行控件的摆放,整个流程基本就是这样。这里的方法略长,我就不贴出来了,有兴趣的小伙伴们可以自行查看。
OK,这就是layout的一个简单的摆放过程。
以上。
View绘制详解(四),谝一谝layout过程的更多相关文章
- View绘制详解(五),draw方法细节详解之View的滚动/滑动问题
关于View绘制系列的文章已经完成了四篇了,前面四篇文章主要带小伙伴们熟悉一下View的体系的整体框架.View的测量以及布局等过程,从本篇博客开始,我们就来看看View的绘制过程.View的绘制涉及 ...
- View绘制详解(三),扒一扒View的测量过程
所有东西都是难者不会,会者不难,Android开发中有很多小伙伴觉得自定义View和事件分发或者Binder机制等是难点,其实不然,如果静下心来花点时间把这几个技术点都研究一遍,你会发现其实这些东西都 ...
- View绘制详解(二),从setContentView谈起
掐指一算,本来今天该介绍View的测量了,可是要说View的测量,那就要从setContentView谈起了,setContentView本身涉及到的东西也是挺多的,所以今天我们就先来看看这个setC ...
- View绘制详解,从LayoutInflater谈起
自定义View算是Android开发中的重中之重了,很多小伙伴可能或多或少都玩过自定义View,对View的绘制流程也有一定的理解.那么现在我想通过几篇博客来详细介绍View的绘制流程,以便使我们更加 ...
- SurfaceView 与view区别详解
SurfaceView 与view区别详解 https://blog.csdn.net/u011339364/article/details/83347109 2018年10月24日 17:20:08 ...
- .NET DLL 保护措施详解(四)各操作系统运行情况
我准备了WEB应用程序及WinForm应用程序,分别在WIN SERVER 2012/2008/2003.Win7/10上实测,以下为实测结果截图: 2012 2008 2003 WIN7 WIN10 ...
- Android游戏开发之旅 View类详解
Android游戏开发之旅 View类详解 自定义 View的常用方法: onFinishInflate() 当View中所有的子控件 均被映射成xml后触发 onMeasure(int, int) ...
- logback -- 配置详解 -- 四 -- <filter>
附: logback.xml实例 logback -- 配置详解 -- 一 -- <configuration>及子节点 logback -- 配置详解 -- 二 -- <appen ...
- pika详解(四) channel 通道
pika详解(四) channel 通道 本文链接:https://blog.csdn.net/comprel/article/details/94662394 版权 channel通道 通道 ...
随机推荐
- u-boot向linux内核传递启动参数(详细)
U-BOOT 在启动内核时,会向内核传递一些参数.BootLoader 可以通过两种方法传递参数给内核,一种是旧的参数结构方式(parameter_struct),主要是 2.6 之前的内核使用的方式 ...
- CentOS上安装MySQL
1.准备RPM安装包 MySQL-server-5.6.33-1.linux_glibc2.5.x86_64 MySQL-client-5.6.33-1.linux_glibc2.5.x86_64 2 ...
- 《GettingThingsDone》--GTD学习笔记(三)-GTD的三个关键原则
原则一:养成收集的习惯 1.收集习惯给个人带来的好处 在收集过程中你会出现焦虑和解脱,难以招架和控制良好的情绪. (1)消极情绪的来源 要做的事情总比你能做的事情多,要做的事情太多并不 ...
- 利用python进行折线图,直方图和饼图的绘制
我用10个国家某年的GDP来绘图,数据如下: labels = ['USA', 'China', 'India', 'Japan', 'Germany', 'Russia', 'Brazil', ...
- iptables端口重定向
需求: tomcat容器使用普通用户启动不能开启1024以内端口,也就80端口不能使用.业务上通常使用80端口访问. 解决方法: iptables既是防火墙也是带路由器功能.所以使用它 ...
- AVLTree的节点删除
当年实现自己的共享内存模板的时候,map和set的没有实现,本来考虑用一个AVLTree作为底层实现的,为啥,因为我当时的数据结构知识里面我和RBTree不熟,只搞过AVLTree,但当时我一直没有看 ...
- Win7 NFS 设置详解 | X-Space
Win7 NFS 设置详解 | X-Space Win7 NFS 设置详解
- TCP/IP协议栈及OSI参考模型详解
OSI参考模型 OSI RM:开放系统互连参考模型(open systeminterconnection reference model) OSI参考模型具有以下优点: 简化了相关的网络操作: 提供设 ...
- [iOS基础控件 - 6.6] 展示团购数据 自定义TableViewCell
A.需求 1.头部广告 2.自定义cell:含有图片.名称.购买数量.价格 3.使用xib设计自定义cell,自定义cell继承自UITableViewCell 4.尾部“加载更多按钮”,以及其被点击 ...
- ios之runtime学习
今天学习了一下ios的runtime,看了其他博主的博客写的很不错,自己就不班门弄斧了,仅在此转载: 1.关于oc中类和元类:http://husbandman.diandian.com/post/2 ...