进程控制块

在linux中进程信息存放在叫做进程控制块的数据结构中,每个进程在内核中都有⼀个进程控制块(PCB)来维护进程相关的信息,Linux内核的 进程控制块是task_struct结构体。在Linux中,这个结构叫做task_struct。
      task_struct是Linux内核的一种数据结构,它会被装载到RAM⾥并且包含着进程的信息。
每个进程都把它的信息放在 task_struct 这个数据结构⾥, task_struct 包含了这些内容:

》》》》》》
标⽰符 : 描述本进程的唯⼀标⽰符,⽤来区别其他进程。
状态 : 任务状态,退出代码,退出信号等。
优先级 : 相对于其他进程的优先级。
程序计数器: 程序中即将被执⾏的下⼀条指令的地址。
内存指针: 包括程序代码和进程相关数据的指针,还有和其他进程共享的内存块的指针
上下⽂数据: 进程执⾏时处理器的寄存器中的数据。
I/O状态信息:包括显⽰的I/O请求,分配给进程的I/O设备和被进程使⽤的⽂件列表。
记账信息: 可能包括处理器时间总和,使⽤的时钟数总和,时间限制,记账号等。

》》》》》》》
保存进程信息的数据结构叫做 task_struct,并且可以在 include/linux/sched.h ⾥找到它。
所有运⾏在系统⾥的

在task_struct中存放的信息是非常多的,下面是整个结构体的内容,可以进行了解了解:

Linux中task_struct结构如下:

struct task_struct 
{
 volatile long state;     //说明了该进程是否可以执行,还是可中断等信息
 unsigned long flags;    //Flage 是进程号,在调用fork()时给出
 int sigpending;         //进程上是否有待处理的信号

mm_segment_t addr_limit;  //进程地址空间,区分内核进程与普通进程在内存存放的位置不同   //0-0xBFFFFFFF
for user-thead     //0-0xFFFFFFFF for kernel-thread
                  
 //调度标志,表示该进程是否需要重新调度,若非0,则当从内核态返回到用户态,会发生调度
 volatile long need_resched;
 int lock_depth;    //锁深度
 long nice;       //进程的基本时间片

//进程的调度策略,有三种,实时进程:SCHED_FIFO,SCHED_RR,
分时进程:SCHED_OTHER
 unsigned long policy;
 struct mm_struct *mm;    //进程内存管理信息
 
 int processor;
 //若进程不在任何CPU上运行, cpus_runnable 的值是0,否则是1 这个值在运行队列被锁时更新
 unsigned long cpus_runnable, cpus_allowed;
 struct list_head run_list;    //指向运行队列的指针
 unsigned long sleep_time;   //进程的睡眠时间

//用于将系统中所有的进程连成一个双向循环链表, 其根是init_task
 struct task_struct *next_task, *prev_task;
 struct mm_struct *active_mm;
 struct list_head local_pages;       //指向本地页面      
 unsigned int allocation_order, nr_local_pages;
 struct linux_binfmt *binfmt;      //进程所运行的可执行文件的格式
 int exit_code, exit_signal;
 int pdeath_signal;           //父进程终止时向子进程发送的信号
 unsigned long personality;
 //Linux可以运行由其他UNIX操作系统生成的符合iBCS2标准的程序
 int did_exec:1; 
 pid_t pid;          //进程标识符,用来代表一个进程
 pid_t pgrp;        //进程组标识,表示进程所属的进程组
 pid_t tty_old_pgrp;      //进程控制终端所在的组标识
 pid_t session;             //进程的会话标识
 pid_t tgid;
 int leader;     //表示进程是否为会话主管
 struct task_struct *p_opptr,*p_pptr,*p_cptr,*p_ysptr,*p_osptr;
 struct list_head thread_group;          //线程链表
 struct task_struct *pidhash_next;    //用于将进程链入HASH表
 struct task_struct **pidhash_pprev;
 wait_queue_head_t wait_chldexit;      //供wait4()使用
 struct completion *vfork_done;         //供vfork() 使用

unsigned long rt_priority;       //实时优先级,用它计算实时进程调度时的weight值

//it_real_value,it_real_incr用于REAL定时器,单位为jiffies, 系统根据it_real_value

//设置定时器的第一个终止时间. 在定时器到期时,向进程发送SIGALRM信号,同时根据

//it_real_incr重置终止时间,it_prof_value,it_prof_incr用于Profile定时器,单位为jiffies。

//当进程运行时,不管在何种状态下,每个tick都使it_prof_value值减一,当减到0时,向进程发送

//信号SIGPROF,并根据it_prof_incr重置时间.
 //it_virt_value,it_virt_value用于Virtual定时器,单位为jiffies。当进程运行时,不管在何种

//状态下,每个tick都使it_virt_value值减一当减到0时,向进程发送信号SIGVTALRM,根据

//it_virt_incr重置初值。

unsigned long it_real_value, it_prof_value,
it_virt_value;
 unsigned long it_real_incr, it_prof_incr, it_virt_value;
 struct timer_list real_timer;        //指向实时定时器的指针
 struct tms times;                      //记录进程消耗的时间
 unsigned long start_time;          //进程创建的时间

//记录进程在每个CPU上所消耗的用户态时间和核心态时间
 long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];

//内存缺页和交换信息:

//min_flt, maj_flt累计进程的次缺页数(Copy on Write页和匿名页)和主缺页数(从映射文件或交换

//设备读入的页面数); nswap记录进程累计换出的页面数,即写到交换设备上的页面数。
 //cmin_flt, cmaj_flt, cnswap记录本进程为祖先的所有子孙进程的累计次缺页数,主缺页数和换出页面数。

//在父进程回收终止的子进程时,父进程会将子进程的这些信息累计到自己结构的这些域中
 unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
 int swappable:1; //表示进程的虚拟地址空间是否允许换出
 //进程认证信息
 //uid,gid为运行该进程的用户的用户标识符和组标识符,通常是进程创建者的uid,gid

//euid,egid为有效uid,gid
 //fsuid,fsgid为文件系统uid,gid,这两个ID号通常与有效uid,gid相等,在检查对于文件

//系统的访问权限时使用他们。
 //suid,sgid为备份uid,gid
 uid_t uid,euid,suid,fsuid;
 gid_t gid,egid,sgid,fsgid;
 int ngroups;                  //记录进程在多少个用户组中
 gid_t groups[NGROUPS];      //记录进程所在的组

//进程的权能,分别是有效位集合,继承位集合,允许位集合
 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;

int keep_capabilities:1;
 struct user_struct *user;
 struct rlimit rlim[RLIM_NLIMITS];    //与进程相关的资源限制信息
 unsigned short used_math;         //是否使用FPU
 char comm[16];                      //进程正在运行的可执行文件名
 int link_count, total_link_ count;  //文件系统信息

//NULL if no tty 进程所在的控制终端,如果不需要控制终端,则该指针为空
 struct tty_struct *tty;
 unsigned int locks;
 //进程间通信信息
 struct sem_undo *semundo;       //进程在信号灯上的所有undo操作
 struct sem_queue *semsleeping;   //当进程因为信号灯操作而挂起时,他在该队列中记录等待的操作
 //进程的CPU状态,切换时,要保存到停止进程的task_struct中
 struct thread_struct thread;
 struct fs_struct *fs;           //文件系统信息
 struct files_struct *files;     //打开文件信息
 spinlock_t sigmask_lock;   //信号处理函数
 struct signal_struct *sig;   //信号处理函数
 sigset_t blocked;                //进程当前要阻塞的信号,每个信号对应一位
 struct sigpending pending;     
//进程上是否有待处理的信号
 unsigned long sas_ss_sp;
 size_t sas_ss_size;
 int (*notifier)(void *priv);
 void *notifier_data;
 sigset_t *notifier_mask;
 u32 parent_exec_id;
 u32 self_exec_id;

spinlock_t alloc_lock;
 void *journal_info;
 };

进程控制块的task_struct结构的更多相关文章

  1. Linux进程管理之task_struct结构

    转载:http://blog.csdn.net/npy_lp/article/details/7335187 内核源码:linux-2.6.38.8.tar.bz2 目标平台:ARM体系结构 进程是处 ...

  2. Linux进程管理之task_struct结构体

    进程是处于执行期的程序以及它所管理的资源(如打开的文件.挂起的信号.进程状态.地址空间等等)的总称.注意,程序并不是进程,实际上两个或多个进程不仅有可能执行同一程序,而且还有可能共享地址空间等资源. ...

  3. Linux进程描述符task_struct结构体详解--Linux进程的管理与调度(一)【转】

    Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息.它定义在include/linux/sched.h文件中. 谈到task_str ...

  4. 进程控制块 与 task_struct

    http://blog.csdn.net/qq_26768741/article/details/54348586 struct task_struct { volatile long state;  ...

  5. Linux下进程描述(1)—进程控制块

    进程概念介绍 进程是操作系统对运行程序的一种抽象. • 一个正在执行的程序: • 一个正在计算机上执行的程序实例: • 能分配给处理器并由处理器执行的实体: • 一个具有普以下特征的活动单元:一组指令 ...

  6. Linux-进程描述(1)—进程控制块

    进程概念介绍 进程是操作系统对运行程序的一种抽象. • 一个正在执行的程序: • 一个正在计算机上执行的程序实例: • 能分配给处理器并由处理器执行的实体: • 一个具有普以下特征的活动单元:一组指令 ...

  7. Linux下进程描述(1)—进程控制块【转】

    转自:http://www.cnblogs.com/33debug/p/6705391.html 进程概念介绍 进程是操作系统对运行程序的一种抽象. • 一个正在执行的程序: • 一个正在计算机上执行 ...

  8. 进程控制块(PCB)

    进程控制块PCB 我们知道,每个进程在内核中都有一个进程控制块(PCB)来维护进程相关的信息,Linux内核的进程控制块是task_struct结构体. /usr/src/linux-headers- ...

  9. 进程控制块PCB结构 task_struct 描述

    注:本分类下文章大多整理自<深入分析linux内核源代码>一书,另有参考其他一些资料如<linux内核完全剖析>.<linux c 编程一站式学习>等,只是为了更好 ...

随机推荐

  1. 一个python

    #!/usr/bin/env python #coding=utf-8 import os # 遍历文件 r=input("type a directory name:") for ...

  2. Unity3d:编辑器中运行正常,发布后的exe提示找不到文件

    解决方案1:查看文件路径拼写方式,如果是用“+”拼接的,请改用System.IO.Path.Combine()方式拼接.经过测试,两种拼接方式打印出来的路径是一样的,但为什么 加号 的方式拼接unit ...

  3. UI:数据持久化

    数据持久化    参考1  参考2  参考3 什么是数据持久化,就是将文件保存在本地的硬盘中,使得应用程序或者机器重启后可以继续访问以前保留的数据.IOS开发中有许多的数据持久化方案. 如下面五种方案 ...

  4. Find n‘th number in a number system with only 3 and 4

    这是在看geeksforgeeks时看到的一道题,挺不错的,题目是 Given a number system with only 3 and 4. Find the nth number in th ...

  5. How can I terminate a thread that has a seperate message loop?

    http://www.techques.com/question/1-10415481/How-can-I-terminate-a-thread-that-has-a-seperate-message ...

  6. Java常见排序算法之直接选择排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  7. Android多线程研究(1)——线程基础及源代码剖析

    从今天起我们来看一下Android中的多线程的知识,Android入门easy,可是要完毕一个完好的产品却不easy,让我们从线程開始一步步深入Android内部. 一.线程基础回想 package ...

  8. 关于javaScript注册事件传递参数的浅析

    最近这半年作为一个java 程序员,我写的javaScript代码都快比java代码多了,前段时间是给某银行做一个柜员管控系统,在柜员授权这一块功能上,由于柜员的授权需要考虑各方面的因素,比如机构权限 ...

  9. Codeforces Gym 100015G Guessing Game 差分约束

    Guessing Game 题目连接: http://codeforces.com/gym/100015/attachments Description Jaehyun has two lists o ...

  10. Codeforces Round #312 (Div. 2) C. Amr and Chemistry 暴力

    C. Amr and Chemistry Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/558/ ...