【推理】UVa 10771 - Barbarian tribes
Barbarian tribes |
In a lost land two primitive tribes coexist: Gareds and Kekas. Every summer solstice they meet and compete to decide which tribe will be the favorite of the gods for the rest of the year, following an old ritual:
First, a local guru chooses three numbers at random: n, m and k.
Afterwards, n Gared maids (in the positions
1, 2,..., n)
and m Keka maids (in the positions
n + 1, n + 2,..., n + m)
are placed in a circle looking inwards.
Then the guru begins to count
1, 2,..., k starting at the first Gared maid.
When the k-th maid is reached, she is immediately sacrificed to the gods.
The guru then counts again
1, 2,..., k
starting at the maid following the one just sacrificed.
Again, the k-th maid reached this way is sacrificed.
After every two sacrifices,
the second sacrificed maid is replaced by a new maid.
In order to decide the tribe of the new maid,
the guru looks at the heads of the two maids just killed
(nothing else remains of them).
If both heads are of the same tribe, the guru calls a Gared maid.
If the heads are from different tribes, the guru calls a Keka maid.
The process then begins again
(counting and sacrificing twice and replacing once)
starting to count at the maid following the new maid
just added to the circle.
Since the number of maids reduces by one after every step
(of two sacrifices and one replacement),
after n + m - 1 steps only one maid remains.
According to the tradition,
the tribe of the last maid will be the favorite of the gods.
(What the guru does to the last maid is something you don't want to know.)
Anyway, write a program such that,
given n, m and k, writes the name of the fortunate tribe.
For example, this is what happens for n = m = 3 and k = 2
(a ``G'' denotes a Gared maid and a ``K'' denotes a Keka maid;
the subindexes mark the order the maids enter the circle):
- Initial content of the circle: G1 G2 G3 K4 K5 K6
Starting to count at G1.
First sacrifice: G2.
Second sacrifice: K4 (replaced by K7). - Content of the circle: G1 G3 K7 K5 K6
Starting to count at K5.
First sacrifice: K6.
Second sacrifice: G3 (replaced by K8). - Content of the circle: G1 K8 K7 K5
Starting to count at K7.
First sacrifice: K5.
Second sacrifice: K8 (replaced by G9). - Content of the circle: G1 G9 K7
Starting to count at K7.
First sacrifice: G1.
Second sacrifice: K7 (replaced by K10). - Content of the circle: G9 K10
Starting to count at G9.
First sacrifice: K10.
Second sacrifice: G9 (replaced by K11). - Final content of the circle: K11
Input
Input consists of zero ore more test cases.
Each test case consists of a line
with three positive integers: n, m and k.
You can assume
1n + m2000 and
1k1000.
A test case with
n = m = k = 0 ends the input and must not be processed.
Output
For every test case, print either "Gared" or "Keka" as convenient.
Sample Input
3 3 2
4 2 2
0 1 7
0 0 0
Sample Output
Keka
Gared
Keka 开始以为是约瑟夫环,TLE了...郁闷半天,后来看了题解恍然大悟。自己还是得加强下思维转换。。。
题目大意:给出n,m和k,有n个G,m个K,站成一个圈,现在有个杀手每次走k步,杀掉当前位置的人,每次杀两个人之后如果这两个人都是G或都是K,就用G补上,否则就用K补上。问说最后剩一个谁。
解题思路:在每杀两个人这个地方进行考虑。无非3种情况:杀两G,多一G,杀两K,多一G,杀一G一K,多一K。
注意,杀一G一K,多一K时,K的数目不变,所以K的人数只会以减2的方式减少。如果K一开始是奇数的话是永远减少不完的,最终肯定剩下K。如果一开始是偶数,最终减少完的必然是K,剩下G。
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
using namespace std;
int main()
{
int n, m, k;
while(scanf("%d%d%d", &n, &m, &k))
{
if(!n && !m && !k) break;
if(m%) printf("Keka\n");
else printf("Gared\n");
}
return ;
}
【推理】UVa 10771 - Barbarian tribes的更多相关文章
- uva 10771
思路题 K的人数只能以2减少 #include <cstdio> #include <cstdlib> #include <cmath> #include < ...
- UVA 11246 - K-Multiple Free set(数论推理)
UVA 11246 - K-Multiple Free set 题目链接 题意:一个{1..n}的集合.求一个子集合.使得元素个数最多,而且不存在有两个元素x1 * k = x2,求出最多的元素个数是 ...
- uva 1561 - Cycle Game(推理)
option=com_onlinejudge&Itemid=8&page=show_problem&problem=4336" style=""& ...
- UVA 1364 - Knights of the Round Table (获得双连接组件 + 二部图推理染色)
尤其是不要谈了些什么,我想A这个问题! FML啊.....! 题意来自 kuangbin: 亚瑟王要在圆桌上召开骑士会议.为了不引发骑士之间的冲突. 而且可以让会议的议题有令人惬意的结果,每次开会前都 ...
- uva 11892 - ENimEN(推理)
题目链接:uva 11892 - ENimEN 题目大意:给定n堆石子的个数,两人轮流选择石子堆取石子,直到不能取为失败,附加条件,假设前一次操作,即队手的操作,没有将选中石子堆中的石子取完,那么当前 ...
- 【推理,贪心】UVa 1319 - Maximum
看到了大神的代码.理解了好久...真是差距. 题意:给出m, p, a, b,然后xi满足已下两个公式, 求 xp1 + xp2 +...+ xpm 的最大值. 1.-1/sqrt(a) <= ...
- 【置换,推理】UVa 1315 - Creaz tea party
Dsecription n participants of «crazy tea party» sit around the table. Each minute one pair of neighb ...
- UVa 1614 Hell on the Markets (贪心+推理)
题意:给定一个长度为 n 的序列,满足 1 <= ai <= i,要求确实每一个的符号,使得它们和为0. 析:首先这一个贪心的题目,再首先不是我想出来的,是我猜的,但并不知道为什么,然后在 ...
- UVA 11774 - Doom's Day(规律)
UVA 11774 - Doom's Day 题目链接 题意:给定一个3^n*3^m的矩阵,要求每次按行优先取出,按列优先放回,问几次能回复原状 思路:没想到怎么推理,找规律答案是(n + m) / ...
随机推荐
- 位图9宫格 BitmapSlice9.jsfl
/** * Version 1.1, May 4: fixed issue with symbols in library folders. **/ /** * BitmapSlice9 JSFL b ...
- uvalive 4795 Paperweight
题意:给出一个5个顶点的多面体以及多面体内一点P.求让 多面体不同的方式(即以不同的面)放在地面上,设这个着地的面为A,多面体重心在A上的投影为B,在保证B在A内部且距离A的各个边界不小于0.2的前提 ...
- leetcode—word ladder II
1.题目描述 Given two words (start and end), and a dictionary, find all shortest transformation sequence( ...
- rpc,客户端与NameNode通信的过程
远程过程:java进程.即一个java进程调用另外一个java进程中对象的方法. 调用方称作客户端(client),被调用方称作服务端(server).rpc的通信在java中表现为客户端去调用服务端 ...
- 那传说中的P、NP以及NPC问题
那传说中的P.NP以及NPC问题 (这里只是自己的一些总结) 在讲这几个问题之前,有几个东西是必须要说的,包括时间复杂度.空间复杂度.图灵机什么的.那么我们就慢慢来一一说来. 图灵机:图 ...
- 【创建本地仓库】【for Centos】CentOS下创建本地repository
[日期]2014年4月24日 [平台]Centos 6.5 [工具]httpd yum-utils createrepo [步骤] 1)安装httpd. yum install httpd 2)安装y ...
- HDU-4622 Reincarnation 后缀数组 | Hash,维护和,扫描
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 题意:给一个字符串,询问某字串的不同字串的个数. 可以用后缀数组来解决,复杂度O(n).先求出倍 ...
- 各种排序算法代码(C语言版)
选择排序 #include <stdio.h> /* * 选择排序 * 稳定性:不稳定 * 时间复杂度:O(N^2) **/ void select_sort(int a[], int l ...
- 给Qt应用程序添加图标文件ico setWindowIcon
1:通过qmake生成makefile实现过程: (1) 找到一张图片.ico,名字改为myappico.ico:注意:Qt5.2中 ico文件是256 * 256. (2) 创建一个新的文本文档,内 ...
- 如何计算ModBus超时时间?
波特率:每秒钟通过信道传输的信息量称为位传输速率,也就是每秒钟传送的二进制位数,简称比特率.比特率表示有效数据的传输速率,用b/s .bit/s.比特/秒,读作:比特每秒. 如9600b/s:指总线上 ...