洛谷P3935 Calculating(整除分块)
题目链接:洛谷
题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$。求 $\sum^r_{i=l}f(i)\ mod\ 998244353$。
$1\leq l\leq r\leq 1.6\times 10^{14}$。
阅读以下内容前请先学会前置技能整除分块
先分析一下 $f(x)$ 的本质。
(读者:不要啰嗦来啰嗦去的好吧!这明显是 $x$ 的约数个数吗!是不是想拖延时间?)
好好好,你赢了。我们来看看如何计算。
看到区间 $[l,r]$ 函数求和,我们应该想到拆成前缀和 $pre(r)-pre(l-1)$。
现在看一看 $pre(x)=\sum^x_{i=1}f(i)$ 如何计算。
我们这样考虑:
$1\sim x$ 中有 $\lfloor\frac{x}{1}\rfloor$ 个 $1$ 的倍数,也就是有 $\lfloor\frac{x}{1}\rfloor$ 个数有约数 $1$。
同理有 $\lfloor\frac{x}{2}\rfloor$ 个数有约数 $2$。
有 $\lfloor\frac{x}{3}\rfloor$ 个数有约数 $3$。
$\dots\dots$
有 $\lfloor\frac{x}{i}\rfloor$ 个数有约数 $i$。
所以 $pre(x)=\sum^x_{i=1}\lfloor\frac{x}{i}\rfloor$。
这个……不就是整除分块模板了吗?
对于一段如何求和难度应该不大,可以自己推出来。
(读者:喂,别这么不良心好吧!)
好吧,$[l,r]$ 这段区间的和为 $\lfloor\frac{x}{l}\rfloor(r-l+1)$。
时间复杂度 $O(\sqrt{r})$,空间复杂度 $O(1)$。
既然是模板题一道,那就直接上代码。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=;
ll l,r;
ll solve(ll x){ //整除分块
ll ans=;
for(ll l=,r;l<=x;l=r+){
r=x/(x/l); //左边界推算右边界
ans=(ans+(r-l+)*(x/l))%mod; //求和
}
return ans;
}
int main(){
scanf("%lld%lld",&l,&r);
printf("%lld\n",((solve(r)-solve(l-))%mod+mod)%mod); //前缀和相减
}
整除分块
洛谷P3935 Calculating(整除分块)的更多相关文章
- 洛谷 - P3935 - Calculating - 整除分块
https://www.luogu.org/fe/problem/P3935 求: \(F(n)=\sum\limits_{i=1}^{n}d(i)\) 枚举因子\(d\),每个因子\(d\)都给其倍 ...
- 洛谷P3935 Calculating (莫比乌斯反演)
P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...
- [洛谷P3935]Calculating
题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\su ...
- [P3935] Calculating - 整除分块
容易发现题目要求的 \(f(x)\) 就是 \(x\) 的不同因子个数 现在考虑如何求 \(\sum_{i=1}^n f(i)\),可以考虑去算每个数作为因子出现了多少次,很容易发现是 \([n/i] ...
- 洛谷 P3935 Calculating 题解
原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...
- 洛谷 P3935 Calculating
虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的 http://www.cnblogs.com/xzz_233/p/8365414.html 测正确性题目:https://www.l ...
- 洛谷P3935 Calculation [数论分块]
题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...
- 洛谷P4198 楼房重建 (分块)
洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...
- 洛谷P4135 作诗 (分块)
洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...
随机推荐
- c# Login UI with background picture animation
准备4张图片 UI control: <Grid x:Class="Test1.MainBgAd" xmlns="http://schemas.microsoft. ...
- LSTM生成尼采风格文章
LSTM生成文本 github地址 使用循环神经网络生成序列文本数据.循环神经网络可以用来生成音乐.图像作品.语音.对话系统对话等等. 如何生成序列数据? 深度学习中最常见的方法是训练一个网络模型(R ...
- Android Studio Xposed模块编写(一)
1.环境说明 本文主要参考https://my.oschina.net/wisedream/blog/471292?fromerr=rNPFQidG的内容,自己实现了一遍,侵权请告知 已经安装xpos ...
- 3、Docker容器管理
一.容器创建 1.创建命令 docker container [root@localhost harbor]# docker container Usage: docker container CO ...
- flask-login 整合 pyjwt + json 简易flask框架
现在很多框架都实现前后端分离,主要为了适应以下几个目的: 1,前后端的分离,可以使前端开发和后端开发更加分工明确,而不是后端还需要在视图模板中加入很多{% XXXX %}标签 2,是为了适应跨域调用或 ...
- vue基础项目安装教程
安装node.js 从node.js官网下载并安装node,安装过程很简单,一路“下一步”就可以了. 安装完成之后,打开命令行工具,输入 node -v,如下图,如果出现相应的版本号,则说明安装成功. ...
- java批量爬取电影资源
摘要 网上有很多个人站来分享电影资源,其实有时候我们自己也想做这个一个电影站来分享资源.但是这个时候就有一个问题,电影的资源应该从哪里来呢?难道要自己一条条手动去从网络上获取,这样无疑是缓慢而又效率低 ...
- centos7 部署LNMP
1.安装Nginx 使用Nginx官方提供的rpm包 [root@nginx ~]# cat /etc/yum.repos.d/nginx.repo [nginx] name=nginx repo b ...
- 从浏览器输入URL到显示页面到底发生了什么?
首先说明一下,当系统本地缓存了你所请求的资源时,会直接把缓存内容解析并显示,而不会进行以下的一系列行为. 一.DNS域名解析 至今的计算机数量可谓是数不胜数,而它们的唯一识别身份就是ip地址.我们常说 ...
- 接口自动化学习--testNG
一个月一更的节奏~ testNg是一个开源的自动化测试框架..具体那些什么特点的就不想打了- -,贴张图(虽然也看不懂): 学习网站:https://www.yiibai.com/testng 一样是 ...