题目大意:给定一个大小为 N 的集合,每次可以从中挑出 2 个或 3 个数进行合并,合并的代价是几个数的权值和,求将这些数合并成 1 个的最小代价是多少。

引理:K 叉哈夫曼树需要保证 \((n-1)\%(k-1)=0\),在此基础上,每次取 K 个合并即可得到最小代价。

代码如下

#include <bits/stdc++.h>
using namespace std; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} int n;
long long ans,tmp;
priority_queue<long long,vector<long long>,greater<long long> >q; void solve(){
n=read();
for(int i=1;i<=n;i++)q.push(read());
if(!(n&1))q.push(0),n++;
for(int i=n;i^1;i-=2)tmp=q.top(),q.pop(),tmp+=q.top(),q.pop(),tmp+=q.top(),q.pop(),q.push(tmp),ans+=tmp;
printf("%lld\n",ans);
} int main(){
solve();
return 0;
}

【CF884D】Boxes And Balls k叉哈夫曼树的更多相关文章

  1. hdu5884 Sort(二分+k叉哈夫曼树)

    题目链接:hdu5884 Sort 题意:n个有序序列的归并排序.每次可以选择不超过k个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问k最小是多少. 题解:先二分k,然后在k给 ...

  2. 两个队列+k叉哈夫曼树 HDU 5884

    // 两个队列+k叉哈夫曼树 HDU 5884 // camp题解: // 题意:nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过TT, ...

  3. UOJ#130 【NOI2015】荷马史诗 K叉哈夫曼树

    [NOI2015]荷马史诗 链接:http://uoj.ac/problem/130 因为不能有前缀关系,所以单词均为叶子节点,就是K叉哈夫曼树.第一问直接求解,第二问即第二关键字为树的高度. #in ...

  4. AcWing:149. 荷马史诗(哈夫曼编码 + k叉哈夫曼树)

    追逐影子的人,自己就是影子. ——荷马 达达最近迷上了文学. 她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅读她爱不释手的<荷马史诗>. 但是由<奥德赛>和<伊 ...

  5. HDU 5884 Sort (二分+k叉哈夫曼树)

    题意:n 个有序序列的归并排序.每次可以选择不超过 k 个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问 k最小是多少. 析:首先二分一下这个 k .然后在给定 k 的情况下, ...

  6. bzoj 4198 [ Noi 2015 ] 荷马史诗 —— 哈夫曼编码(k叉哈夫曼树)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4198 第一次写哈夫曼树!看了很多博客. 哈夫曼树 & 哈夫曼编码:https://w ...

  7. BZOJ 4198: [Noi2015]荷马史诗 哈夫曼树 k叉哈夫曼树

    https://www.lydsy.com/JudgeOnline/problem.php?id=4198 https://blog.csdn.net/chn_jz/article/details/7 ...

  8. P2168 [NOI2015]荷马史诗 k叉哈夫曼树

    思路:哈夫曼编码 提交:1次(参考题解) 题解:类似合并果子$QwQ$ 取出前$k$小(注意如果叶子结点不满的话要补全),合并起来再扔回堆里去. #include<cstdio> #inc ...

  9. 贪心法:K叉哈夫曼树

    NOI2015荷马史诗 一部<荷马史诗>中有 n 种不同的单词,从 1 到 n 进行编号.其中第 i 种单词出现的总次数为 wi.Allison 想要用 k 进制串 si 来替换第 i 种 ...

随机推荐

  1. iterms 快捷键

    标签 新建标签:command + t 关闭标签:command + w 切换标签:command + 数字 command + 左右方向键 切换全屏:command + enter 查找:comma ...

  2. WPF编程,通过KeyFrame 类型制作控件线性动画的一种方法。

    原文:WPF编程,通过KeyFrame 类型制作控件线性动画的一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/articl ...

  3. MiZ702学习笔记10——文本实例化IP的方法

    之前,添加vivado自带IP的时候,都是以图形化的方式:一般是新建一个Block Design顶层文件,然后将图形化的ip贴到,Block Design中. 但是,在进行PL的开发过程中,有时不想使 ...

  4. mfc 控件添加变量

    关联控件变量 初始化数据 一.关联控件变量 .为Edit控件关联数值类变量 变量名 m_edt1_s .为Edit控件关联控件类变量 变量名 m_edt1_ctl 二.控件变量的使用 HWND h=: ...

  5. tkinter 弹出窗口 传值回到 主窗口

    有些时候,我们需要使用弹出窗口,对程序的运行参数进行设置.有两种选择 一.标准窗口 如果只对一个参数进行设置(或者说从弹出窗口取回一个值),那么可以使用simpledialog,导入方法: from ...

  6. ElasticSearch入门 第四篇:使用C#添加和更新文档

    这是ElasticSearch 2.4 版本系列的第四篇: ElasticSearch入门 第一篇:Windows下安装ElasticSearch ElasticSearch入门 第二篇:集群配置 E ...

  7. 部署AlwaysOn第二步:配置AlwaysOn,创建可用性组

    AlwaysOn是在SQL Server 2012中新引入的一种高可用技术,从名称中可以看出,AlwaysOn的设计目标是保持数据库系统永远可用.AlwaysOn利用了Windows服务器故障转移集群 ...

  8. CSS 天坑 I - 字体单位

    首先,本文所讨论的“坑”是在做回应式网页设计( Responsive Web Design 以下简称 RWD)时显现的,如果你还只是在做传统的Web设计这算不上是一个坑,因为传统的Web页面是死的,不 ...

  9. LeetCode Letter Combinations of a Phone Number (DFS)

    题意 Given a digit string, return all possible letter combinations that the number could represent. A ...

  10. centos7 源码部署LNMP

    一.环境 系统环境:centos 7.4 64位 Nginx:1.7.9 MySQL: 5.7.20 (二进制包) PHP:5.6.37 二.Ngin 安装 Nginx部署 yum install   ...