课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions

-----------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------------------------------------

import numpy as np
A=np.random.randn(4, 3)
B=np.sum(A, axis=1, keepdims=True) # axis=1时,按照行计算; axis=0时,按照列计算
print("A="+str(A))
print("B="+str(B)) result:
A=[[-0.02149271 -1.0911196 -0.63240592]
[-0.11458854 -0.18210595 0.82210656]
[ 0.39105364 -0.97201463 -0.71820102]
[ 0.30185741 -0.50767254 -0.73277816]]
B=[[-1.74501822]
[ 0.52541207]
[-1.29916201]
[-0.93859329]]
-----------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------


-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------
答案仅供参考
课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 2、Practice Questions的更多相关文章
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第三周:浅层神经网络(Shallow neural networks) -课程笔记
第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[
- 【面向代码】学习 Deep Learning(三)Convolution Neural Network(CNN)
========================================================================================== 最近一直在看Dee ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题
1.What does the analogy “AI is the new electricity” refer to? (B) A. Through the “smart grid”, AI i ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题
Frequently Asked Questions Congratulations to be part of the first class of the Deep Learning Specia ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 3、Python Basics with numpy (optional)
Python Basics with numpy (optional)Welcome to your first (Optional) programming exercise of the deep ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标
1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 0、学习目标
1. Build a logistic regression model, structured as a shallow neural network2. Implement the main st ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 2、编程作业常见问题与答案(Programming Assignment FAQ)
Please note that when you are working on the programming exercise you will find comments that say &q ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)
--------------------------------------------------中文翻译---------------------------------------------- ...
随机推荐
- IntelliJ IDEA 2017版 使用笔记(五) 模板 live template自定义设置(二) ;postfix使用;IDE快捷键使用
一.live template 活模板 就像这个单词的含义一样,live template就是一个高效的提高代码,书写速度的方式,(live template位置File-----settin ...
- keras model.compile(loss='目标函数 ', optimizer='adam', metrics=['accuracy'])
深度学习笔记 目标函数的总结与整理 目标函数,或称损失函数,是网络中的性能函数,也是编译一个模型必须的两个参数之一.由于损失函数种类众多,下面以keras官网手册的为例. 在官方keras.io里 ...
- Linux常用备份恢复工具
在 Linux 中可以通过各种各样的方法来执行备份.所涉及的技术从非常简单的脚本驱动的方法,到精心设计的商业化软件.备份可以保存到远程网络设备.磁带驱动器和其他可移动媒体上.备份可以是基于文件的或基于 ...
- Hdu1796 How many integers can you find 2017-06-27 15:54 25人阅读 评论(0) 收藏
How many integers can you find Time Limit : 12000/5000ms (Java/Other) Memory Limit : 65536/32768K ...
- 通过端口号查找进程号并杀掉进程window和Linux版本
window版本: cmd下执行: 1.查找某端口号下的进程: netstat -ano|findstr 8080 如果该端口号存在进程,执行完命令后会出现列表,最后一列的数字表示该端口号下的进程号 ...
- unigui作中间件使用
unigui作中间件使用 可返回string或者tstream数据. 如果返回JSON字符,则UNIGUI就是REST 中间件. procedure TUniServerModule.UniGUISe ...
- unigui编译路径设置
unigui编译路径设置 先设路径变量 再追加如下路径,即可成功编译: ;$(uni)\uniTools\Dcu\Delphi2021;$(uni)\uniGUI\Dcu\Delphi2021;$(u ...
- [leetcode 12] Inter to Roman
1 题目: Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range fr ...
- MySQL--Ansible推送密钥实现免密码登录
从别人网站抄过来,保留自用 场景: 对于需要管理的很多linux服务器,每次登录都输入密码比较痛苦,配置一个跳板机,将本地公钥推送带各访问节点上实现SSH登录 登录账号:admin 本地秘钥路径:/h ...
- jacoco初探
# 背景 集团的代码覆盖率平台因为网络问题无法使用,只能自己研究下. 覆盖率是衡量自动化用例效果产品的一个指标,但只是一个辅助指标,覆盖率高并不意味着质量好,但覆盖率低却能说明一些问题, # 对比 覆 ...