[violet2]sillyz
题意:定义S(n) = n*各数位之积,然后给定L<=R<=10^18,求有多少个n在[L,R]区间内
思路:
看了半天无从下手。。看完题解才豁然开朗。。
具体思路看vani神博客吧。讲的很清楚。。
code:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const ll Inf = 1000000000LL;
int d[maxn], dc[maxn][], tot;
int td, tc[]; void dfs(int r, int s, ll num){
if (num > Inf) return;
if (r == || s == ){
d[tot] = num;
for (int i = ; i < ; ++i)
dc[tot][i] = tc[i];
tot++;
return;
}
dfs(r + , s, num);
tc[r-]++;
dfs(r, s + , num * r);
tc[r-]--;
} ll frac[];
ll count(int m){
int left = m;
ll res = frac[m];
for (int i = ; i < ; ++i) left -= tc[i], res /= frac[tc[i]];
res /= frac[left];
return res;
} int bit[]; ll calculate(ll b, int p){
if (b <= ) return ;
int k = ;
while (b > ) bit[++k] = b % , b /= ;
int size = ;
for (int i = ; i < ; ++i)
tc[i] = dc[p][i], size += tc[i];
ll res = ;
for (int i = ; i < k; ++i)
if (i >= size) res += count(i);
for ( ;k > ; --k){
if (bit[k] == || size > k) break;
for (int i = ; i < bit[k]; ++i) if (tc[i-]){
--tc[i-], --size;
if (k > size) res += count(k - );
++tc[i-], ++size;
}
if (bit[k] >= ){
if (k > size) res += count(k-);
if (tc[bit[k]-] == ) break;
--tc[bit[k]-], --size;
}
}
return res;
} ll calculate(ll x){
if (x <= ) return ;
ll res = ;
for (int i = ; i < tot; ++i)
res += calculate(x / d[i] + , i);
return res;
} void pre_do(){
frac[] = ;
for (int i = ; i <= ; ++i) frac[i] = frac[i-] * i;
memset(tc, , sizeof(tc));
tot = ;
dfs(, , );
} int main(){
// freopen("a.in", "r", stdin);
// freopen("a.out", "w", stdout);
pre_do();
ll l, r;
while (cin >> l >> r){
ll ans = calculate(r) - calculate(l - );
cout << ans << endl;
}
return ;
}
[violet2]sillyz的更多相关文章
- Atitit.软件命名空间 包的命名统计 及命名表(2000个名称) 方案java package
Atitit.软件命名空间 包的命名统计 及命名表(2000个名称) 方案java package 1. 统计的lib jar 列表1 2. Code3 3. 常用包名按找字母排序(2000个)4 ...
随机推荐
- 常用的TCP Option
当前,TCP常用的Option如下所示———— Kind (Type) Length Name Reference 描述 & 用途 0 1 EOL RFC 793 选项列表结束 1 1 NOP ...
- FPKM与RPKM
FPKM与RPKM (2015-01-09 23:55:17) 转载▼ 标签: 转载 原文地址:FPKM与RPKM作者:Fiona_72965 定义: FPKM:Fragment Per Kil ...
- 从1~N中任选出三个数,最小公倍数最大
已知一个正整数N,问从1~N中任选出三个数,它们的最小公倍数最大可以为多少. 当n为奇数:n.n-1.n-2这是三个最大数,并且它们两两互质.因为连续的奇.偶.奇,互质.连续的两个数互质是因为它们的公 ...
- Clover相关知识
-f 重建驱动缓存 darkwake=4 有深度睡眠有关的设置,不懂 kext-dev-mode=1 启用第三方驱动,比较重要. dart=0 修复因开启 VT-d 导致系统启动时SMC五国错误,系统 ...
- Vue修饰符
为了方便大家写代码,vue.js给大家提供了很多方便的修饰符,比如我们经常用到的取消冒泡,阻止默认事件等等~ 目录 表单修饰符 事件修饰符 鼠标按键修饰符 键值修饰符 v-bind修饰符(实在不知道叫 ...
- 【Linux】ApacheBench(ab)压力测试工具
AB的简介 ab是apachebench命令的缩写. ab是apache自带的压力测试工具.ab非常实用,它不仅可以对apache服务器进行网站访问压力测试,也可以对或其它类型的服务器进行压力测试.比 ...
- 数组方法indexOf & lastIndexOf
indexOf() 语法:arrayObject.indexOf(searchvalue, startIndex) 功能:从数组的开头(位置0)开始向后查找. 参数:searchvalue:必需,要查 ...
- libmysqlclient version
You probably know that the version number of the libmysqlclient.so library has changed from .16 to . ...
- PHP中=>是什么意思
一般用在php数组键名与元素的连接符如:$arr = array('a'=>'123','b'=>'456'); foreach($arr as $key=>$val){//$key ...
- R入门(二)-对象以及它们的模式和属性
对象以及它们的模式和属性 R操作的实体在技术上说是对象.R的对象类型包括数值型,复数型,逻辑型,字符型和原味型. “原子”型对象:对象的元素都是一样的类型或模式,如逻辑向量和字符串向量. 列表对象:列 ...