传送门

一道不错的题。


考虑n==kn==kn==k的时候怎么做。

显然应该从nnn到111如果灯是开着的就把它关掉这样是最优的。

不然如果乱关的话会互相影响肯定不如这种优。

于是就可以定义状态f[i]f[i]f[i]表示从当前按iii盏为最优方案转移到按i−1i-1i−1盏为最优方案的代价。

然后f[i]=in+n−in∗(1+f[i]+f[i+1])f[i]=\frac i n+\frac {n-i} n*(1+f[i]+f[i+1])f[i]=ni​+nn−i​∗(1+f[i]+f[i+1])

移项解方程可以推出最后的式子:

f[i]=in∗(n+(n−i)∗f[i+1])f[i]=\frac i n*(n+(n-i)*f[i+1])f[i]=ni​∗(n+(n−i)∗f[i+1])

代码:

#include<bits/stdc++.h>
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
typedef long long ll;
const int N=1e5+5,mod=1e5+3;
int n,k,inv[N],a[N],f[N],ans=0,cnt=0;
int main(){
	n=read(),k=read();
	for(int i=1;i<=n;++i)a[i]=read();
	for(int i=n;i;--i)if(a[i]){
		++cnt;
		for(int j=1;j*j<=i;++j){
			if(i!=i/j*j)continue;
			a[j]^=1,a[i/j]^=(i/j!=j);
		}
	}
	if(cnt<=k){
		for(int i=2;i<=n;++i)cnt=(ll)cnt*i%mod;
		cout<<cnt;
		return 0;
	}
	inv[1]=1;
	for(int i=2;i<=n;++i)inv[i]=(ll)inv[mod%i]*(mod-mod/i)%mod;
	f[n]=1;
	for(int i=n-1;i>k;--i)f[i]=(ll)inv[i]*((((ll)n+(ll)(n-i)*f[i+1]%mod))%mod)%mod;
	for(int i=cnt;i>k;--i){
		ans+=f[i];
		if(ans>=mod)ans-=mod;
	}
	ans+=k;
	if(ans>=mod)ans-=mod;
	for(int i=2;i<=n;++i)ans=(ll)ans*i%mod;
	cout<<ans;
	return 0;
}

2018.11.01 bzoj4872: [Shoi2017]分手是祝愿(期望dp)的更多相关文章

  1. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  2. 【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP

    [题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望 ...

  3. 【bzoj4872】[Shoi2017]分手是祝愿 期望dp

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  4. BZOJ 4827 [Shoi2017]分手是祝愿 ——期望DP

    显然,考虑当前状态最少需要几步,直接贪心即可. 显然我们只需要考虑消掉这几个就好了. 然后发现,关系式找出来很简单,是$f(i) f(i+1) f(i-1)$之间的. 但是计算的时候并不好算. 所以把 ...

  5. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  6. Bzoj4872: [Shoi2017]分手是祝愿

    题面 Bzoj Sol 首先从大向小,能关就关显然是最优 然后 设\(f[i]\)表示剩下最优要按i个开关的期望步数,倒推过来就是 \[ f[i]=f[i-1]*i*inv[n]+f[i+1]*(n- ...

  7. 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP

    题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...

  8. BZOJ4872: [Shoi2017]分手是祝愿【概率期望DP】【思维好题】

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  9. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

随机推荐

  1. Java基本语法之动手动脑

    1.枚举类型 运行EnumTest.java 运行结果:false,false,true,SMALL,MEDIUM,LARGE 结论:枚举类型是引用类型,枚举不属于原始数据类型,它的每个具体值都引用一 ...

  2. swift - iOS10之后的加速器

    import UIKit //1.加速器框架 import CoreMotion class ViewController: UIViewController { //1.创建运动管理者 必须设置为 ...

  3. REUSE_ALV_FIELDCATALOG_MERGE

    作用: 根据程序中的数据内表结构,来自动生成FIELDCAT[]内表,不用定义宏或者Form来一个个加入,会根据内表结构所参照的词典类型来自动完成如表标题字段名的生成,得到大概的FIELDCAT[]后 ...

  4. C#中泛型的解释(object,list,var,dynamic的区别)

    泛型是 2.0 版 C# 语言和公共语言运行库 (CLR) 中的一个新功能.泛型将类型参数的概念引入 .NET Framework,类型参数使得设计如下类和方法成为可能:这些类和方法将一个或多个类型的 ...

  5. 自动发现项目中的所有URL

    我的rbac组件,是想用到任何一个,项目中的. so 问题来了. - 问题: 拿到一个项目. 怎样获取到,当前项目中, 所有的URL 以及 每个URL的别名name, 还有是有 namespace 命 ...

  6. webstorm打开一个门户工程流程

    1.电脑上安装了nginx   ,进入conf目录下,找到nginx.conf打开 2.将原配置中server部分替换掉 server{ listen       80;     server_nam ...

  7. android开发中一个activity如何调用另一个xml中的控件

    有时候,我们需要在一个activity中使用另一个activity中的控件,这时候就不能直接findViewById,不然会报错指向空对象,这时就需要像下面这样做. LayoutInflater fa ...

  8. P<0.05就够了?还要校正!校正!3个方法献上

    P<0.05就够了?还要校正!校正!3个方法献上 (2017-01-03 17:55:12) 转载▼   分类: 数理统计 (转  医生科研助手 解螺旋 微信公众号)   当有多组数据要比较时, ...

  9. iOS push新的调用方法

    // IOS8 新系统需要使用新的代码if ([[[UIDevice currentDevice] systemVersion] floatValue] >= 8.0){    [[UIAppl ...

  10. P1083龙舟比赛

    题目如下: 现在正在举行龙舟比赛,我们现在获得了最后冲刺时的俯视图像,现在你要输出各条龙舟的名次. 这张图像由r行c列的字符组成,每行的最左边的字符表示起点,所以字符为'S',最右边的字符为'F'.并 ...