http://www.lydsy.com/JudgeOnline/problem.php?id=2194

相乘两项的下标 的 差相同

那么把某一个反过来就是卷积形式

fft优化

#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; const int N=(<<)+; const double pi=acos(-); int r[N]; struct Complex
{
double a,b; Complex(double x_=,double y_=):a(x_),b(y_) {} Complex operator + (Complex p)
{
Complex c;
c.a=a+p.a;
c.b=b+p.b;
return c;
} Complex operator - (Complex p)
{
Complex c;
c.a=a-p.a;
c.b=b-p.b;
return c;
} Complex operator * (Complex p)
{
Complex c;
c.a=a*p.a-b*p.b;
c.b=a*p.b+b*p.a;
return c;
}
}; typedef Complex E;
E A[N],B[N],C[N]; int n; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void fft(E *a,int f)
{
for(int i=;i<n;++i)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int i=;i<n;i<<=)
{
E wn(cos(pi/i),f*sin(pi/i));
for(int p=i<<,j=;j<n;j+=p)
{
E w(,);
for(int k=;k<i;++k,w=w*wn)
{
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y; a[j+k+i]=x-y;
}
}
}
} int main()
{
int cnt;
read(cnt);
int x,y;
for(int i=;i<cnt;++i)
{
read(x); read(y);
A[cnt--i].a=x;
B[i].a=y;
}
int m=cnt+cnt-,l=;
for(n=;n<=m;n<<=) l++;
for(int i=;i<n;++i) r[i]=(r[i>>]>>)|((i&)<<l-);
fft(A,);
fft(B,);
for(int i=;i<n;++i) C[i]=A[i]*B[i];
fft(C,-);
for(int i=cnt-;i>=;--i) printf("%d\n",int(C[i].a/n+0.5));
}

bzoj千题计划256:bzoj2194: 快速傅立叶之二的更多相关文章

  1. bzoj2194 快速傅立叶之二 ntt

    bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...

  2. [bzoj2194]快速傅立叶之二_FFT

    快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...

  3. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  4. bzoj千题计划166:bzoj2179: FFT快速傅立叶

    http://www.lydsy.com/JudgeOnline/problem.php?id=2179 FFT做高精乘 #include<cmath> #include<cstdi ...

  5. bzoj千题计划196:bzoj4826: [Hnoi2017]影魔

    http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...

  6. bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪

    http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...

  7. bzoj千题计划242:bzoj4034: [HAOI2015]树上操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...

  8. bzoj千题计划177:bzoj1858: [Scoi2010]序列操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...

  9. bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序

    http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...

随机推荐

  1. Java关键字 Finally执行与break, continue, return等关键字的关系

    长文短总结: 在程序没有在执行到finally之前异常退出的情况下,finally是一定执行的,即在finally之前的return语句将在finally执行之后执行. finally总是在控制转移语 ...

  2. 微信小程序选择并上传图片

      上传图片 API: wx.chooseImage() 和 wx.uploadFile() wx.chooseImage({ count: 1, // 默认9 sizeType: ['origina ...

  3. Jmeter(十九)_ForEach控制器实现网页爬虫

    一直以来,爬虫似乎都是写代码去实现的,今天像大家介绍一下Jmeter如何实现一个网页爬虫! 龙渊阁测试开发家园 317765580 Jmeter的爬虫原理其实很简单,就是对网页提交一个请求,然后把返回 ...

  4. ssm整合各配置文件

    ssm整合 1.配置web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns ...

  5. 金蝶盘点机PDA仓库条码管理:仓库如何盘点

    1.1. 仓库盘点 传统的仓库盘点,需要人工手工抄写盘点单,时候再去电脑上一行行的录入盘点单,操作非常耗时费力,往往需要盘点好几天,最终盘点效果还不好,在抄写过程中容易出现错误,从而造成盘点结果不准确 ...

  6. 统计学习方法c++实现之六 支持向量机(SVM)及SMO算法

    前言 支持向量机(SVM)是一种很重要的机器学习分类算法,本身是一种线性分类算法,但是由于加入了核技巧,使得SVM也可以进行非线性数据的分类:SVM本来是一种二分类分类器,但是可以扩展到多分类,本篇不 ...

  7. springmvc 集成apache cxf 开发webservice 示例

    今天需要在springmvc中增加webservice功能,试了多次axis2,和cxf都不行,后来发现在springmvc中最好用cxf集成非常方便,在又一次尝试后终于把demo整合到现有的项目中 ...

  8. Linux内核分析 读书笔记 (第一章、第二章)

    第一章 Linux内核简介 1.1 Unix的历史 Unix很简洁,仅仅提供几百个系统调用并且有一个非常明确的设计目的. 在Unix中,所有东西都被当做文件,这种抽象使对数据和对设备的操作是通过一套相 ...

  9. 剑指offer:二叉树的镜像

    题目描述: 操作给定的二叉树,将其变换为源二叉树的镜像. 输入描述: 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 镜像二叉树 8 / \ 10 6 / \ / ...

  10. Beta版本冲刺(四)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员:恺琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示组 ...