(FFT) A * B Problem Plus
题目链接:https://cn.vjudge.net/contest/280041#problem/F
题目大意:给你两个数,求这俩数相乘的结果。(长度最长5000)
具体思路:硬算肯定是不行的,比如说1024*1234 ,我们可以将1024转换成 (4*10^0 + 2*10^1 +0*10^2+1*10^3),然后1234转换成(4*10^0+3*10^1+2*10^2+1*10^3),然后我们就可以转换成多项式相乘来保证计算精度了。
AC代码:
#include<iostream>
#include<cmath>
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std;
# define ll long long
const int mod = 1e9+;
const double PI = acos(-1.0);
struct complex
{
double r,i;
complex(double _r = ,double _i = )
{
r = _r;
i = _i;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
void change(complex y[],int len)
{
int i,j,k;
for(i = , j = len/; i < len-; i++)
{
if(i < j)
swap(y[i],y[j]);
k = len/;
while( j >= k)
{
j -= k;
k /= ;
}
if(j < k)
j += k;
}
}
void fft(complex y[],int len,int on)
{
change(y,len);
for(int h = ; h <= len; h <<= )
{
complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j = ; j < len; j += h)
{
complex w(,);
for(int k = j; k < j+h/; k++)
{
complex u = y[k];
complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
if(on == -)
for(int i = ; i < len; i++)
y[i].r /= len;
}
const int maxn = 2e5+;//开数组的时候注意,长度的话至少是开两倍的,因为是两个数组相加的!!。
complex x1[maxn],x2[maxn];
char str1[maxn],str2[maxn];
int sum[maxn];
int main()
{
while(scanf("%s %s",str1,str2)==)
{
int len1=strlen(str1);
int len2=strlen(str2);
int len=;
while(len<len1*||len<len2*)
len<<=;
for(int i=; i<len1; i++)
{
x1[i]=complex(str1[len1--i]-'',);
}
for(int i=len1; i<len; i++)
{
x1[i]=complex(,);
}
for(int i=; i<len2; i++)
{
x2[i]=complex(str2[len2--i]-'',);
}
for(int i=len2; i<len; i++)
{
x2[i]=complex(,);
}
fft(x1,len,);
fft(x2,len,);
for(int i=; i<len; i++)
{
x1[i]=x1[i]*x2[i];
}
fft(x1,len,-);
for(int i=; i<len; i++)
{
sum[i]=(int)(x1[i].r+0.5);
}
for(int i=; i<len; i++)
{
sum[i+]+=sum[i]/;
sum[i]%=;
}
len=len1+len2-;
while(sum[len]<=&&len>)
len--;
for(int i=len; i>=; i--)
{
printf("%c",sum[i]+'');
}
printf("\n");
}
return ;
}
(FFT) A * B Problem Plus的更多相关文章
- 【CF954I】Yet Another String Matching Problem(FFT)
[CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个 ...
- A * B Problem Plus HDU - 1402 (FFT)
A * B Problem Plus HDU - 1402 (FFT) Calculate A * B. InputEach line will contain two integers A and ...
- 【数学】快速傅里叶变换(FFT)
快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通 ...
- 快速傅里叶(FFT)的快速深度思考
关于按时间抽取快速傅里叶(FFT)的快速理论深度思考 对于FFT基本理论参考维基百科或百度百科. 首先谈谈FFT的快速何来?大家都知道FFT是对DFT的改进变换而来,那么它究竟怎样改进,它改进的思想在 ...
- 【BZOJ3527】力(FFT)
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...
- 【BZOJ4827】【HNOI2017】礼物(FFT)
[BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每 ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 【BZOJ4503】两个串(FFT)
[BZOJ4503]两个串(FFT) 题面 给定串\(S\),以及带通配符的串\(T\),询问\(T\)在\(S\)中出现了几次.并且输出对应的位置. \(|S|,|T|<=10^5\),字符集 ...
- 【BZOJ4259】残缺的字符串(FFT)
[BZOJ4259]残缺的字符串(FFT) 题面 给定两个字符串\(|S|,|T|\),两个字符串中都带有通配符. 回答\(T\)在\(S\)中出现的次数. \(|T|,|S|<=300000\ ...
随机推荐
- 蓝牙BLE实用教程(转载)
欢迎使用 小书匠(xiaoshujiang)编辑器,您可以通过 设置 里的修改模板来改变新建文章的内容. 1.蓝牙BLE常见问答 Q: Smart Ready 和 Smart 以及传统蓝牙之间是什么关 ...
- 常用校验码(奇偶校验码、海明校验码、CRC校验码)
一.奇偶校验码 二.海明校验码 三.CRC校验码 计算机系统运行时,各个部之间要进行数据交换.交换的过程中,会有发生误码的可能(即0变成1或1变成0),由于计算机的储存是通过二进制代码来实现的的, ...
- Leetcode题库——49.字母异位词分组【##】
@author: ZZQ @software: PyCharm @file: leetcode49_groupAnagrams.py @time: 2018/11/19 13:18 要求:给定一个字符 ...
- Day Six
站立式会议 站立式会议内容总结 442 今天:实现计划界面的逻辑 遇到的问题:模态框问题 明天:解决上面问题,开始使用动态数据 331 今天:点击添加找到文件 遇到问题:找到文件在app的引入实现 明 ...
- Alpha 冲刺九
团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 项目燃尽图 项目进展 完善各自部分 项目描 ...
- 转Git学习碰到的问题
[原]Git学习碰到的问题 1.通过 windows 下的 gitbash 连接 github 时 $ ssh-keygen -t rsa -C "abcd@efgh.com" / ...
- php 的优缺点
1.优点:开源 免费性 快捷性 [程序开发快,运行快,技术本身学习快] 插件丰富,网上的解决方案有很多,而且还有庞大的开源社区可以提供帮助. 跨平台性强 效率高 图像处理 面向对象 [在php4 ...
- poj 2406 Power Strings(kmp应用)
题目链接:http://poj.org/problem?id=2406 题意:给出一个字符串s,求重复子串出现的最大次数. 分析:kmp的next[]数组的应用. 要求重复子串出现的最大次数,其实就是 ...
- SparkException: Master removed our application
come from https://stackoverflow.com/questions/32245498/sparkexception-master-removed-our-application ...
- Java之工具类:判断对象是否为空或null
import java.lang.reflect.Array; import java.util.Collection; import java.util.Map; /** * 判断对象是否为空或nu ...