【HNOI2017】礼物
题面
题解
显然两个手环只需要一个的亮度增加\(c \in [-m, m]\)和原题是等价的。
于是可以写成这样一个公式:
\]
于是最后只有\(-2\sum_{i=1}^n x_iy_{i+k}\)不是常数项(假设\(c\)是常数)
于是现在问题变成了求\(\sum_{i=1}^nx_iy_{i+k}\)的最大值。
这个时候就需要用到一些套路。
我们将序列\(y\)反过来然后在后面接一遍,变成多项式卷积。
然后我们可以看出\(\sum x_iy_{i+k}\)就是\(x^{n+k-1}\)的系数,
然后\(\because m \leq 100\),暴力枚举\(c\)即可。
代码
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define RG register
#define clear(x, y) memset(x, y, sizeof(x));
using namespace std;
inline int read()
{
int data=0, w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1, ch=getchar();
while(ch>='0'&&ch<='9') data=(data<<3)+(data<<1)+(ch^48), ch=getchar();
return data*w;
}
const int maxn(2000010);
const double pi(acos(-1));
int d[maxn];
int s[maxn], ans=2147483647, cnt;
int n, m, r[maxn], N, M, c[maxn];
complex<double> a[maxn], b[maxn];
template<int opt>
inline void FFT(complex<double> *p)
{
for(RG int i=0;i<N;i++) if(i<r[i]) swap(p[i], p[r[i]]);
for(RG int i=1;i<=N;i<<=1)
{
RG complex<double> rot(cos(pi/i), opt*sin(pi/i));
for(RG int j=0;j<N;j+=(i<<1))
{
RG complex<double> w(1, 0);
for(RG int k=0;k<i;k++, w*=rot)
{
complex<double> x=p[j+k], y=w*p[j+k+i];
p[j+k]=x+y; p[j+k+i]=x-y;
}
}
}
}
inline void init()
{
M=n+(N=n-1);
for(RG int i=1;i<=n;i++) a[i-1]=d[i];
for(RG int i=0;i<n;i++) b[i]=b[i+n]=c[n-i];
M+=N; for(N=1;N<=M;N<<=1) ++cnt;
for(RG int i=0;i<N;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(cnt-1));
FFT<1>(a); FFT<1>(b); for(RG int i=0;i<N;i++) a[i]*=b[i];
FFT<-1>(a);
for(RG int i=0;i<=M;i++) s[i]=(int)(a[i].real()/N+0.5);
}
int main()
{
n=read(); m=read();
for(RG int i=1;i<=n;i++) d[i]=read();
for(RG int i=1;i<=n;i++) c[i]=read();
init();
int o=0, p=0, q=0, r=0, maxs=-ans;
for(RG int i=1;i<=n;i++) o+=d[i]*d[i], p+=c[i]*c[i], q+=d[i], r+=c[i];
for(RG int i=n-1;i<(n<<1);i++) maxs=max(maxs, s[i]);
for(RG int C=-m;C<=m;C++)
{
int res=o+p+C*C*n+2*C*(q-r)-(maxs << 1);
ans=min(res, ans);
}
printf("%d\n", ans);
return 0;
}
【HNOI2017】礼物的更多相关文章
- bzoj 4827: [Hnoi2017]礼物 [fft]
4827: [Hnoi2017]礼物 题意:略 以前做的了 化一化式子就是一个卷积和一些常数项 我记着确定调整值还要求一下导... #include <iostream> #include ...
- P3723 [AH2017/HNOI2017]礼物
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1 c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] ...
- 【BZOJ4827】 [Hnoi2017]礼物
BZOJ4827 [Hnoi2017]礼物 Solution 如果一串数的增加,不就等于另一串数减吗? 那么我们可以把答案写成另一个形式: \(ans=\sum_{i=1}^n(x_i-y_i+C)^ ...
- 4827: [Hnoi2017]礼物
4827: [Hnoi2017]礼物 链接 分析: 求最小的$\sum_{i=1}^{n}(x_i-y_i)^2$ 设旋转了j位,每一位加上了c. $\sum\limits_{i=1}^{n}(x_{ ...
- 【LG3723】[AHOI2017/HNOI2017]礼物
[LG3723][AHOI2017/HNOI2017]礼物 题面 洛谷 题解 首先我们将\(c\)看作一个可以为负的整数,那么我们就可以省去讨论在哪个手环加\(c\)的繁琐步骤了 设我们当前已经选好了 ...
- 洛谷 P3723 [AH2017/HNOI2017]礼物 解题报告
P3723 [AH2017/HNOI2017]礼物 题目描述 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手环,一个留给自己,一个送给她.每个手环上各有 \(n\) 个 ...
- [BZOJ4827][Hnoi2017]礼物(FFT)
4827: [Hnoi2017]礼物 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1315 Solved: 915[Submit][Status] ...
- [Luogu P3723] [AH2017/HNOI2017]礼物 (FFT 卷积)
题面 传送门:洛咕 Solution 调得我头大,我好菜啊 好吧,我们来颓柿子吧: 我们可以只旋转其中一个手环.对于亮度的问题,因为可以在两个串上增加亮度,我们也可以看做是可以为负数的. 所以说,我们 ...
- 笔记-[AH2017/HNOI2017]礼物
笔记-[AH2017/HNOI2017]礼物 [AH2017/HNOI2017]礼物 \[\begin{split} ans_i=&\sum_{j=1}^n(a_j-b_j+i)^2\\ =& ...
- [bzoj4827][Hnoi2017]礼物_FFT
礼物 bzoj-4827 Hnoi-2017 题目大意:给定两个长度为$n$的手环,第一个手环上的$n$个权值为$x_i$,第二个为$y_i$.现在我可以同时将所有的$x_i$同时加上自然数$c$.我 ...
随机推荐
- Go语言包管理工具dep
什么是dep? dep和go,在一定程度上相当于maven之于Java,composer之于PHP,dep是go语言官方的一个包管理工具. 相比较go get而言,dep可以直接给引入的第三方包一个专 ...
- python终端总是无法删除字符
yum install readline-devel
- Mbps Mb M Kb如何换算
在传输单位的写法上,B 和 b 分别代表 Bytes 和 bits,两者的定义是不同的,具体换算公式如下:1 Byte = 8 bits 1 Kb = 1024 bits 1 KB = 1024 by ...
- 自己实现more命令
#include <stdio.h> #include <stdlib.h> #define PAGELEN 24 #define LINELEN 512 int see_mo ...
- ngrep命令用法
ngrep 是grep(在文本中搜索字符串的工具)的网络版,他力求更多的grep特征,用于搜寻指定的数据包.正由于安装ngrep需用到libpcap库, 所以支持大量的操作系统和网络协议.能识别TCP ...
- ajax status 错误
status **:未被始化 status **:请求收到,继续处理 status **:操作成功收到,分析.接受 status **:完成此请求必须进一步处理 status **:请求包含一个错误语 ...
- 高通Audio中ASOC的machine驱动(一)
ASoC被分为Machine.Platform和Codec三大部分,其中的Machine驱动负责Platform和Codec之间的耦合以及部分和设备或板子特定的代码,再次引用上一节的内容:Machin ...
- redis之禁用保护模式以及修改监听IP
今天在安装filebeat的时候,出现了关于redis报错的问题,所以来总结一下: 报错信息是: (error) DENIED Redis is running in protected mode b ...
- You are not late! You are not early!
Do you think you are going No Where in Life? STOP! Take a deep breathe THINK! New York is three hour ...
- 为什么ConcurrentHashMap的读操作不需要加锁?
我们知道,ConcurrentHashmap(1.8)这个并发集合框架是线程安全的,当你看到源码的get操作时,会发现get操作全程是没有加任何锁的,这也是这篇博文讨论的问题--为什么它不需要加锁呢? ...