//

//  RB_tree_STL.cpp

//  笔记

//

//  Created by fam on 15/3/21.

//

//

#include "RB_tree_STL.h"

//---------------------------15/03/21----------------------------

RB_tree

{

/*

一个由上而下程序:

为了避免父子节点皆为红色的情况持续向上层发展,形成处理时效上的瓶颈,可以从上向下处理,

假设新增的节点为a,那就沿着a的路径,只要看到一个节点的两个子节点都是红色,就把这个节点改为红色

其他两个子节点改成黑色。

*/

//RB_tree的节点设计

typedef
bool __rb_tree_color_type;

const __rb_tree_color_type __rb_tree_red =

const __rb_tree_color_type __rb_tree_black =
true;

//__rb_tree_node_base

struct __rb_tree_node_base

{

typedef __rb_tree_color_type color_type;

typedef __rb_tree_node_base* base_ptr;

color_type color;

base_ptr parent;

base_ptr left;

base_ptr right;

//一直向左走,就会找到最小值

static base_ptr minimum(base_ptr x)

{

while (x->left !=
)

x=x->left;

return x;

}

//一直向右走

static base_ptr maximum(base_ptr x)

{

while (x->right !=
)

x=x->right;

return x;

}

};

//__rb_tree_node

template<class Value>

struct __rb_tree_node :
public __rb_tree_node_base

{

typedef __rb_tree_node<Value>* link_type;

Value value_field;

};

//节点设计结束

/*

re_tree的迭代器

re_tree的迭代器和slist的迭代器很相似,都是分成两层结构

re_tree属于双向迭代器,但是不具备随机定位的能力

*/

//__rb_tree_base_iterator

struct __rb_tree_base_iterator

{

typedef __rb_tree_node_base::base_ptr  base_ptr;

typedef bidirectional_iterator_tag iterator_category;

typedef ptrdiff_t difference_type;

base_ptr node;

void increment()

{

if(node->right !=
)

{

node = node->right;

while (node->left !=
)

node =node->left;

}

//只要node是他父节点的右儿子,他就比他父亲大,我们要找比node大的

else

{

base_ptr y= node->parent;

while(node == y->right)

{

node = y;

y = y->parent;

}

if(node->right != y)//如果node是根节点,而且没有右儿子

node=y;

}

}

void decrement()

{

//这个发生在node时header或者end()时

if(node->color == __rb_tree_red &&

node->parent->parent == node)

node =node->right;

else
)

{

base_ptr y = node->left;

while(y->right !=
)

y = y->right;

node = y;

}

else

{

base_ptr y =node->parent;

while(node == y->left)

{

node = y;

y = y->parent;

}

node = y;

}

}

//原文说increment有4种状况,其实只有三种,状况2并不是一种结果

};

template<class Value,class Ref,class
Ptr>

struct __rb_tree_iterator :
public __rb_tree_base_iterator

{

typedef Value value_type;

typedef Ref reference;

typedef Ptr pointer;

typedef __rb_tree_iterator<Value, Value&, Value*> iterator;

typedef __rb_tree_iterator<Value,const Value&,const Value*> const_iterator;

typedef __rb_tree_iterator<Value, Ref, Ptr> self;

//经过多日的stl熏陶,感觉有些明白self和iterator的关系了,self是当前的节点本身(因为self用到的地方

//很多,可以简化书写,iterator是一个类型属性供别人使用的。

typedef __rb_tree_node<Value>* link_type;

//构造函数

__rb_tree_iterator(){}

__rb_tree_iterator(link_type x) {node = x;}

__rb_tree_iterator(const iterator& x) {node = it.node;}

referenceoperator*()
const {return link_type(node)->value_field;}

#ifdef __SGI_STL_NO_ARROW_OPERATOR

pointeroperator->()
const {return &(operator*());}

#endif

//++ --操作

self&operator++() {increment();
return *this;}

self&operator++(){increment();return *this;}

selfoperator++(int)

{

self tmp = *this;

increment();

return tmp;

}

self&operator--(){decrement();return *this;}

selfoperator--(int)

{

self tmp = *this;

decrement();

return tmp;

}

}

//class rb_tree

template<class Key,class Value,
class KeyOfValue,class Compare,

class Alloc = alloc>

class rb_tree

{

protected:

typedef
void* void_point;

typedef __rb_tree_node_base* base_ptr;

typedef __rb_tree_node<Value> rb_tree_node;

typedef simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator;

typedef __rb_tree_color_type color_type;

public:

typedef Key key_type;

typedef Value value_type;

typedef value_type* pointer;

typedef
const value_type* const_pointer;

typedef value_type& reference;

typedef
const value_type& const_reference;

typedef rb_tree_node* link_type;

typedef size_t size_type;

typedef ptrdiff_t difference_type;

protected:

//内存分配和释放

link_type get_node()

{

return rb_tree_node_allocator::allocate();

}

void put_node(link_type p)

{

rb_tree_node_allocator::deallocate(p);

}

//申请内存并调用构造函数等于new操作

link_type create_node(const value_type& x)

{

link_type tmp = get_node();

__STL_TRY

{

construct(&tmp->value_field,x);

}

__STL_UNWIND(put_node(tmp));

return tmp;

}

//克隆一个节点,只有颜色和键值,不会拷贝关系(左右儿子) 有个疑问,为什么parent没有赋0

link_type clone_node(link_type x)

{

link_type tmp = create_node(x->value_field);

tmp->color = x->color;

tmp->left =;

tmp->right =;

return temp;

}

void destroy_node(link_type p)

{

destroy(&p->value_field);

put_node(p);

}

protected:

size_type node_count;

link_type header;

Compare key_compare;

link_type& root()const {return (link_type&) header->parent;}

link_type& leftmost()const {return (link_type&) header->left;}

link_type rightmost()const {return (link_type&) header->right;}

//一下12个函数全部为了简化取成员操作

static link_type& left(link_type x)

{

return (link_type&)(x->left);

}

static link_type& right(link_type x)

{

return (link_type&)(x->right);

}

static link_type& parent(link_type x)

{

return (link_type&)(x->parent);

}

static reference& value(link_type x)

{

return x->value_field;

}

static
const Key& key(link_type x)

{

return KeyOfValue()( value(x));

}

static color_type& color(link_type x)

{

return (color_type&)(x->color);

}

static link_type& left(base_ptr x)

{

return (link_type&)(x->left);

}

static link_type& right(base_ptr x)

{

return (link_type&)(x->right);

}

static link_type& parent(base_ptr x)

{

return (link_type&)(x->parent);

}

static reference& value(base_ptr x)

{

return ((link_type)x)->value_field;

}

static
const Key& key(base_ptr x)

{

return KeyOfValue()( value(link_type(x)));

}

static color_type& color(base_ptr x)

{

return (color_type&)(link_type(x)->color);

}

//求最大和最小值

static link_type minimum(link_type x)

{

return (link_type) __rb_tree_node_base::minimum(x);

}

static link_type maximum(link_type x)

{

return (link_type) __rb_tree_node_base::maximum(x);

}

public:

typedef __rb_tree_iterator<value_type, reference, pointer> iterator;

private:

iterator __insert(base_ptr x, base_ptr y,const value_type& v);

link_type __copy(link_type x, link_type p);

void __erase(link_type x);

//初始化,给header申请一个节点的内存,让root(header->parent)为0,让左右最值都为header,并设置成红色

void init()

{

header = get_node();

color(header) = __rb_tree_red;

root() =;

leftmost() = header;

rightmost() =header;

}

public:

rb_tree(const Compare& comp=Compare()

: node_count(), key_compare(comp))

{

init();

}

~rb_tree()

{

clear();

put_node(header);

}

rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&

operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x);

public:

//各种基础操作

Compare key_comp()const {return key_compare;}

iterator begin() {return leftmost();}

iterator end() {return header;}

bool empty()
;}

size_type size()const {return node_count;}

size_type max_size());}

public:

pair<iterator,bool> insert_unique(const value_type& x);

};

stl源码剖析 详细学习笔记 RB_tree (1)的更多相关文章

  1. stl源码剖析 详细学习笔记 RB_tree (2)

    //---------------------------15/03/22---------------------------- //一直好奇KeyOfValue是什么,查了下就是一个和仿函数差不多 ...

  2. stl源码剖析 详细学习笔记 set map

    // //  set map.cpp //  笔记 // //  Created by fam on 15/3/23. // // //---------------------------15/03 ...

  3. stl源码剖析 详细学习笔记 hashtable

    //---------------------------15/03/24---------------------------- //hashtable { /* 概述: sgi采用的是开链法完成h ...

  4. stl源码剖析 详细学习笔记heap

    // //  heap.cpp //  笔记 // //  Created by fam on 15/3/15. // // //---------------------------15/03/15 ...

  5. stl源码剖析 详细学习笔记 空间配置器

    //---------------------------15/04/05---------------------------- /* 空间配置器概述: 1:new操作包含两个阶段操作 1>调 ...

  6. stl源码剖析 详细学习笔记 算法(1)

    //---------------------------15/03/27---------------------------- //算法 { /* 质变算法:会改变操作对象之值 所有的stl算法都 ...

  7. stl源码剖析 详细学习笔记 算法总览

    //****************************基本算法***************************** /* stl算法总览,不在stl标准规格的sgi专属算法,都以 *加以标 ...

  8. stl源码剖析 详细学习笔记 hashset hashmap

    //---------------------------15/03/26---------------------------- //hash_set { /* hash_set概述: 1:这是一个 ...

  9. stl源码剖析 详细学习笔记priority_queue slist

    // //  priority_queue.cpp //  笔记 // //  Created by fam on 15/3/16. // // //------------------------- ...

随机推荐

  1. [SQLSERVER] 把TransactionLog截断

    注意:以下语句非常危险 --BACKUP LOG MyDb TO DISK=’NUL:’

  2. Linux 补丁生成与使用

    我们在升级Linux 内核的时候,难免会接触到补丁的知识.下面对如何生成补丁和如何打补丁作讲解. 生成补丁: 制作 hello.c 和 hello_new.c 两个文件如如下所示. ➜ diff ls ...

  3. python 多进程 Event的使用

    Event事件  多进程的使用 通俗点儿讲  就是 1.  Event().wait()    插入在进程中插入一个标记(flag)  默认为 false  然后flag为false时  程序会停止运 ...

  4. CVE-2013-2551

    目录 小白的CVE-2013-2551 分析 & 利用 0xFF 前言 0x00 环境和工具 0x01 分析POC POC 调试 0x02 利用 构造R3任意内存读写 劫持eip 利用利用 0 ...

  5. JavaScript中数组slice和splice的对比小结

    前言 今天重温了一下Javascript,看到了数组的方法,其中有两个比较相似的方法——splice和splice,看着很像,就是多了一个p,但是用法却相当不一样. 在使用中,可以通过选择一个具有强语 ...

  6. vue组件-子组件向父组件传递数据-自定义事件

    自定义事件 我们知道,父组件是使用 props 传递数据给子组件,但如果子组件要把数据传递回去,应该怎样做?那就是自定义事件!

  7. istio1.0.2配置

    项目的组件相对比较复杂,原有的一些选项是靠 ConfigMap 以及 istioctl 分别调整的,现在通过重新设计的Helm Chart,安装选项用values.yml或者 helm 命令行的方式来 ...

  8. CentOS7创建本地YUM源的三种方法

    这篇文章主要介绍了CentOS7创建本地YUM源的三种方法,本文讲解了使用CentOS光盘作为本地yum源.如何为CentOS创建公共镜像.创建完全自定义的本地源等内容,需要的朋友可以参考下     ...

  9. <数据结构与算法分析>读书笔记--递归

    一.什么是递归 程序调用自身的编程技巧称为递归( recursion).递归做为一种算法在程序设计语言中广泛应用. 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的 ...

  10. python json格式字符串转换为字典格式

    不废话,看代码 #_*_ coding:utf- _*_ import os import json course=open('C:\\Users\\ly199\\Desktop\\list.txt' ...