题意

题目链接

分析

  • 由于起点和终点都是加油站,所以我们可以把整个问题看成是从加油站到加油站。
  • 考虑一个暴力的做法,用最短路在 \(O(n^2\log n)\) 的时间内求出加油站两两之间的最短路。于是问题变成了最小瓶颈路。把所有询问离线跑最小生成树,判断连通性即可。
  • 考虑优化刚才的建边。假设 \(a,b,c\) 都是加油站。在 \(a \rightarrow b\) 的最短路径中出现了一个点 \(x\) 满足到 \(x\) 最近的点是 \(c\) ,那么我们完全可以从 \(a\) 直接走到 \(c\),而 \(c\) 又是当前最近的能够到达的加油站,所以这样走一定会更优。
  • 将加油站全部放入优先队列跑最短路,求出距离每个点最近的加油站 \({from}_x\) 和 \(x\) 到 \(from_x\) 的距离 \(dis_x\) 。
  • 枚举每条边如果两端的 \(from\) 不同则可以建立路径 \({from}_u \rightarrow {from}_v\), 距离 \({dis}_u+{dis}_v+w_e\)。然后再用 MST 求解即可。
  • 总时间复杂度为 \(O(n\log n)\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=2e5 + 7;
const LL inf=1e13;
int n,m,s,edc,q;
int head[N],vis[N],from[N],par[N],ans[N];
LL dis[N];
struct qry{
int u,v,id;LL d;
bool operator <(const qry &rhs)const{
return d<rhs.d;
}
}A[N],B[N];
struct edge{
int lst,to,c;
edge(){}edge(int lst,int to,int c):lst(lst),to(to),c(c){}
}e[N*4];
void Add(int a,int b,int c){
e[++edc]=edge(head[a],b,c),head[a]=edc;
e[++edc]=edge(head[b],a,c),head[b]=edc;
}
struct data{
int u;LL dis;
data(){}data(int u,LL dis):u(u),dis(dis){}
bool operator <(const data &rhs)const{
return rhs.dis<dis;
}
};
priority_queue<data>Q;
int getpar(int a){
return par[a]==a?a:par[a]=getpar(par[a]);
}
int main(){
n=gi(),s=gi(),m=gi();
rep(i,1,n) par[i]=i;
rep(i,1,n) dis[i]=inf;
rep(i,1,s) {
int x=gi();
dis[x]=0;from[x]=x;
Q.push(data(x,dis[x]));
}
rep(i,1,m) {
A[i].u=gi(),A[i].v=gi(),A[i].d=gi();
Add(A[i].u,A[i].v,A[i].d);
}
while(!Q.empty()){
int u=Q.top().u;Q.pop();
if(vis[u]) continue;vis[u]=1;
go(u)if(dis[u]+e[i].c<dis[v]){
dis[v]=dis[u]+e[i].c;
from[v]=from[u];
Q.push(data(v,dis[v]));
}
}
int cnt=0;
rep(i,1,m){
if(from[A[i].u]==from[A[i].v]) continue;
A[++cnt]=(qry){from[A[i].u],from[A[i].v],0,dis[A[i].u]+dis[A[i].v]+A[i].d};
}
q=gi();
rep(i,1,q)
B[i].u=gi(),B[i].v=gi(),B[i].d=gi(),B[i].id=i; sort(A+1,A+1+cnt);
sort(B+1,B+1+q);
A[cnt+1].d=inf;
int now=1;
rep(i,1,q){
for(;now<=cnt&&A[now].d<=B[i].d;++now){
int x=A[now].u,y=A[now].v;
par[getpar(x)]=getpar(y);
}
ans[B[i].id]=getpar(B[i].u)==getpar(B[i].v);
}
rep(i,1,q) puts(ans[i]?"TAK":"NIE");
return 0;
}

[BZOJ4144][AMPPZ2014]Petrol[多源最短路+MST]的更多相关文章

  1. 4144: [AMPPZ2014]Petrol (多源最短路+最小生成树+启发式合并)

    4144: [AMPPZ2014]Petrol Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 752  Solved: 298[Submit][Sta ...

  2. bzoj4144 [AMPPZ2014]Petrol

    link 题意: 给一个n个点m条边的带权无向图,其中k个点是加油站,每个加油站可以加满油,但不能超过车的油量上限.有q个询问,每次给出x,y,b,保证x,y都是加油站,问一辆油量上限为b的车从x出发 ...

  3. BZOJ4144 [AMPPZ2014]Petrol 【最短路 + 最小生成树】

    题目链接 BZOJ4144 题解 这题好妙啊,,orz 假设我们在一个非加油站点,那么我们一定是从加油站过来的,我们剩余的油至少要减去这段距离 如果我们在一个非加油站点,如果我们到达不了任意加油站点, ...

  4. BZOJ4144: [AMPPZ2014]Petrol(最短路 最小生成树)

    题意 题目链接 Sol 做的时候忘记写题解了 可以参考这位大爷 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...

  5. 【BZOJ4144】[AMPPZ2014]Petrol 最短路+离线+最小生成树

    [BZOJ4144][AMPPZ2014]Petrol Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油 ...

  6. 【BZOJ4144】[AMPPZ2014]Petrol(最短路+最小生成树+并查集)

    Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是 ...

  7. BZOJ 4144: [AMPPZ2014]Petrol

    4144: [AMPPZ2014]Petrol Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 457  Solved: 170[Submit][Sta ...

  8. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  9. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

随机推荐

  1. sql Server 查询方法的优化

    在使用SQL语句查询数据库记录时,如果要查询相同的内容,有着不同的多种方法. 仍然,尽管使用多种方法可以得到相同的结果,但是,如果您使用不同的方法,在执行效益上是截然不同的.因此,我们得仔细考虑,如果 ...

  2. 转:基于InstallShield2013LimitedEdition的安装包制作

    InstallShield Limited Edition for Visual Studio 2013 图文教程(教你如何打包.NET程序)   InstallShield Limited Edit ...

  3. Linux parted命令详解

    parted常见命令参数 Usage: parted [OPTION]... [DEVICE [COMMAND [PARAMETERS]...]...] Apply COMMANDs with PAR ...

  4. 【转】Java十大常用框架介绍(spring系+dubbo+RabbitMQ+Ehcache+redis)

    一.SpringMVC Spring Web MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将web层进行职责解耦,基于请求驱动 ...

  5. Linux下搭建lnmp环境

    前提:假设阅读本文的读者已经拥有基本的linux使用技巧,能够解决系统安装问题,以及软件安装的技巧. 注意: 本文所涉及的主要安装包(需要下载使用的)安装包,在本文最后会给出百度云盘链接,需要使用的, ...

  6. 阿里八八Alpha阶段Scrum(5/12)

    今日进度 叶文滔: 与添加日程界面完成界面对接. 问题困难:发现浮动按钮拖曳存在BUG,无法正确判断拖曳与点击事件,已经修复为普通悬浮按钮. 林炜鸿: 绘制完成添加日程界面. 李嘉群: 1.尝试有关用 ...

  7. Python接口自动化--SSL 3

    官方文档参考地址: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings 针对SSL Warnings,u ...

  8. SASS对css的管理

    一.SASS简介 SASS是一种CSS的开发工具,提供了许多便利的写法,大大节省了设计者的时间,使得CSS的开发,变得简单和可维护. 本文总结了SASS的主要用法.我的目标是,有了这篇文章,日常的一般 ...

  9. SAP客户端 测试机、开发机、生产机

     SAP客户端 测试机.开发机.生产机     客户端(即Client),是SAP组织架构里最高层的组织单元,所有数据,包括静态数据(科目.客户.供应商.物料.资产等).业务数据(采购订单.销售订单. ...

  10. c++ ActiveX基础1:使用VS2010创建MFC ActiveX工程项目

    1.ActiveX的基本概念 ActiveX控件可以看作是一个极小的服务器应用程序,它不能独立运行,必须嵌入到某个容器程序中,与该容器一起运行.这个容器包括WEB网页,应用程序窗体等... Activ ...