题意

题目链接

分析

  • 由于起点和终点都是加油站,所以我们可以把整个问题看成是从加油站到加油站。
  • 考虑一个暴力的做法,用最短路在 \(O(n^2\log n)\) 的时间内求出加油站两两之间的最短路。于是问题变成了最小瓶颈路。把所有询问离线跑最小生成树,判断连通性即可。
  • 考虑优化刚才的建边。假设 \(a,b,c\) 都是加油站。在 \(a \rightarrow b\) 的最短路径中出现了一个点 \(x\) 满足到 \(x\) 最近的点是 \(c\) ,那么我们完全可以从 \(a\) 直接走到 \(c\),而 \(c\) 又是当前最近的能够到达的加油站,所以这样走一定会更优。
  • 将加油站全部放入优先队列跑最短路,求出距离每个点最近的加油站 \({from}_x\) 和 \(x\) 到 \(from_x\) 的距离 \(dis_x\) 。
  • 枚举每条边如果两端的 \(from\) 不同则可以建立路径 \({from}_u \rightarrow {from}_v\), 距离 \({dis}_u+{dis}_v+w_e\)。然后再用 MST 求解即可。
  • 总时间复杂度为 \(O(n\log n)\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=2e5 + 7;
const LL inf=1e13;
int n,m,s,edc,q;
int head[N],vis[N],from[N],par[N],ans[N];
LL dis[N];
struct qry{
int u,v,id;LL d;
bool operator <(const qry &rhs)const{
return d<rhs.d;
}
}A[N],B[N];
struct edge{
int lst,to,c;
edge(){}edge(int lst,int to,int c):lst(lst),to(to),c(c){}
}e[N*4];
void Add(int a,int b,int c){
e[++edc]=edge(head[a],b,c),head[a]=edc;
e[++edc]=edge(head[b],a,c),head[b]=edc;
}
struct data{
int u;LL dis;
data(){}data(int u,LL dis):u(u),dis(dis){}
bool operator <(const data &rhs)const{
return rhs.dis<dis;
}
};
priority_queue<data>Q;
int getpar(int a){
return par[a]==a?a:par[a]=getpar(par[a]);
}
int main(){
n=gi(),s=gi(),m=gi();
rep(i,1,n) par[i]=i;
rep(i,1,n) dis[i]=inf;
rep(i,1,s) {
int x=gi();
dis[x]=0;from[x]=x;
Q.push(data(x,dis[x]));
}
rep(i,1,m) {
A[i].u=gi(),A[i].v=gi(),A[i].d=gi();
Add(A[i].u,A[i].v,A[i].d);
}
while(!Q.empty()){
int u=Q.top().u;Q.pop();
if(vis[u]) continue;vis[u]=1;
go(u)if(dis[u]+e[i].c<dis[v]){
dis[v]=dis[u]+e[i].c;
from[v]=from[u];
Q.push(data(v,dis[v]));
}
}
int cnt=0;
rep(i,1,m){
if(from[A[i].u]==from[A[i].v]) continue;
A[++cnt]=(qry){from[A[i].u],from[A[i].v],0,dis[A[i].u]+dis[A[i].v]+A[i].d};
}
q=gi();
rep(i,1,q)
B[i].u=gi(),B[i].v=gi(),B[i].d=gi(),B[i].id=i; sort(A+1,A+1+cnt);
sort(B+1,B+1+q);
A[cnt+1].d=inf;
int now=1;
rep(i,1,q){
for(;now<=cnt&&A[now].d<=B[i].d;++now){
int x=A[now].u,y=A[now].v;
par[getpar(x)]=getpar(y);
}
ans[B[i].id]=getpar(B[i].u)==getpar(B[i].v);
}
rep(i,1,q) puts(ans[i]?"TAK":"NIE");
return 0;
}

[BZOJ4144][AMPPZ2014]Petrol[多源最短路+MST]的更多相关文章

  1. 4144: [AMPPZ2014]Petrol (多源最短路+最小生成树+启发式合并)

    4144: [AMPPZ2014]Petrol Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 752  Solved: 298[Submit][Sta ...

  2. bzoj4144 [AMPPZ2014]Petrol

    link 题意: 给一个n个点m条边的带权无向图,其中k个点是加油站,每个加油站可以加满油,但不能超过车的油量上限.有q个询问,每次给出x,y,b,保证x,y都是加油站,问一辆油量上限为b的车从x出发 ...

  3. BZOJ4144 [AMPPZ2014]Petrol 【最短路 + 最小生成树】

    题目链接 BZOJ4144 题解 这题好妙啊,,orz 假设我们在一个非加油站点,那么我们一定是从加油站过来的,我们剩余的油至少要减去这段距离 如果我们在一个非加油站点,如果我们到达不了任意加油站点, ...

  4. BZOJ4144: [AMPPZ2014]Petrol(最短路 最小生成树)

    题意 题目链接 Sol 做的时候忘记写题解了 可以参考这位大爷 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...

  5. 【BZOJ4144】[AMPPZ2014]Petrol 最短路+离线+最小生成树

    [BZOJ4144][AMPPZ2014]Petrol Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油 ...

  6. 【BZOJ4144】[AMPPZ2014]Petrol(最短路+最小生成树+并查集)

    Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是 ...

  7. BZOJ 4144: [AMPPZ2014]Petrol

    4144: [AMPPZ2014]Petrol Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 457  Solved: 170[Submit][Sta ...

  8. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  9. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

随机推荐

  1. 13 款惊艳的 Node.js 框架——第1部分

    [编者按]本文作者为 Peter Wayner,主要介绍13款至精至简的 Node.js 框架,帮助你简化高速网站.丰富 API 以及实时应用的开发流程.本文系国内 ITOM 管理平台 OneAPM ...

  2. windows10局域网实现文件共享

    1.共享文件夹设置: 磁盘文件夹,鼠标右键 选择高级共享 如图,自定义选项: 控制面板中添加新用户,一定给设置一个密码(远程登录时候用) 用户: * windows键+R * \\IP地址\目录 * ...

  3. Python 面向对象补充

    什么是面向对象编程 类 + 对象 class 类: def 函数1(): pass def 函数2(): pass obj是对象, 实例化的过程 obj = 类() obj.函数1() 例1 , 某些 ...

  4. 修改SQL Server数据库表的创建时间最简单最直接有效的方法

    说明:这篇文章是几年前我发布在网易博客当中的原创文章,但由于网易博客现在要停止运营了,所以我就把这篇文章搬了过来,因为这种操作方式是通用的,即使是对现在最新的SQL Server数据库里面的操作也是一 ...

  5. Java J2EE读取配置文件

    package com; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import javax.naming.InitialCon ...

  6. kettle数据同步

    通过kettle实现两张表的数据同步,具体设计如下:

  7. Active Directory、Exchange、单点登录,企业账号统一管理解决方案

    现在的公司一般都会有很多内部管理系统,比如OA.ERP.CRM.邮件系统等.员工入职之后如果每个系统都创建一个账号和密码,首先员工记系统账号就是一件非常头疼的事情,如果公司有一百个系统那就得创建一百个 ...

  8. 模拟的confirm

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"/> <title> ...

  9. Spring IOC容器创建bean过程浅析

    1. 背景 Spring框架本身非常庞大,源码阅读可以从Spring IOC容器的实现开始一点点了解.然而即便是IOC容器,代码仍然是非常多,短时间内全部精读完并不现实 本文分析比较浅,而完整的IOC ...

  10. 腾讯课堂老师qq号码转换成 teacherid

    result = 215696775^858006833 if(result){ result=4294967296+result; } alert(result);