[BZOJ4144][AMPPZ2014]Petrol[多源最短路+MST]
题意
分析
- 由于起点和终点都是加油站,所以我们可以把整个问题看成是从加油站到加油站。
- 考虑一个暴力的做法,用最短路在 \(O(n^2\log n)\) 的时间内求出加油站两两之间的最短路。于是问题变成了最小瓶颈路。把所有询问离线跑最小生成树,判断连通性即可。
- 考虑优化刚才的建边。假设 \(a,b,c\) 都是加油站。在 \(a \rightarrow b\) 的最短路径中出现了一个点 \(x\) 满足到 \(x\) 最近的点是 \(c\) ,那么我们完全可以从 \(a\) 直接走到 \(c\),而 \(c\) 又是当前最近的能够到达的加油站,所以这样走一定会更优。
- 将加油站全部放入优先队列跑最短路,求出距离每个点最近的加油站 \({from}_x\) 和 \(x\) 到 \(from_x\) 的距离 \(dis_x\) 。
- 枚举每条边如果两端的 \(from\) 不同则可以建立路径 \({from}_u \rightarrow {from}_v\), 距离 \({dis}_u+{dis}_v+w_e\)。然后再用 MST 求解即可。
- 总时间复杂度为 \(O(n\log n)\)。
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=2e5 + 7;
const LL inf=1e13;
int n,m,s,edc,q;
int head[N],vis[N],from[N],par[N],ans[N];
LL dis[N];
struct qry{
int u,v,id;LL d;
bool operator <(const qry &rhs)const{
return d<rhs.d;
}
}A[N],B[N];
struct edge{
int lst,to,c;
edge(){}edge(int lst,int to,int c):lst(lst),to(to),c(c){}
}e[N*4];
void Add(int a,int b,int c){
e[++edc]=edge(head[a],b,c),head[a]=edc;
e[++edc]=edge(head[b],a,c),head[b]=edc;
}
struct data{
int u;LL dis;
data(){}data(int u,LL dis):u(u),dis(dis){}
bool operator <(const data &rhs)const{
return rhs.dis<dis;
}
};
priority_queue<data>Q;
int getpar(int a){
return par[a]==a?a:par[a]=getpar(par[a]);
}
int main(){
n=gi(),s=gi(),m=gi();
rep(i,1,n) par[i]=i;
rep(i,1,n) dis[i]=inf;
rep(i,1,s) {
int x=gi();
dis[x]=0;from[x]=x;
Q.push(data(x,dis[x]));
}
rep(i,1,m) {
A[i].u=gi(),A[i].v=gi(),A[i].d=gi();
Add(A[i].u,A[i].v,A[i].d);
}
while(!Q.empty()){
int u=Q.top().u;Q.pop();
if(vis[u]) continue;vis[u]=1;
go(u)if(dis[u]+e[i].c<dis[v]){
dis[v]=dis[u]+e[i].c;
from[v]=from[u];
Q.push(data(v,dis[v]));
}
}
int cnt=0;
rep(i,1,m){
if(from[A[i].u]==from[A[i].v]) continue;
A[++cnt]=(qry){from[A[i].u],from[A[i].v],0,dis[A[i].u]+dis[A[i].v]+A[i].d};
}
q=gi();
rep(i,1,q)
B[i].u=gi(),B[i].v=gi(),B[i].d=gi(),B[i].id=i;
sort(A+1,A+1+cnt);
sort(B+1,B+1+q);
A[cnt+1].d=inf;
int now=1;
rep(i,1,q){
for(;now<=cnt&&A[now].d<=B[i].d;++now){
int x=A[now].u,y=A[now].v;
par[getpar(x)]=getpar(y);
}
ans[B[i].id]=getpar(B[i].u)==getpar(B[i].v);
}
rep(i,1,q) puts(ans[i]?"TAK":"NIE");
return 0;
}
[BZOJ4144][AMPPZ2014]Petrol[多源最短路+MST]的更多相关文章
- 4144: [AMPPZ2014]Petrol (多源最短路+最小生成树+启发式合并)
4144: [AMPPZ2014]Petrol Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 752 Solved: 298[Submit][Sta ...
- bzoj4144 [AMPPZ2014]Petrol
link 题意: 给一个n个点m条边的带权无向图,其中k个点是加油站,每个加油站可以加满油,但不能超过车的油量上限.有q个询问,每次给出x,y,b,保证x,y都是加油站,问一辆油量上限为b的车从x出发 ...
- BZOJ4144 [AMPPZ2014]Petrol 【最短路 + 最小生成树】
题目链接 BZOJ4144 题解 这题好妙啊,,orz 假设我们在一个非加油站点,那么我们一定是从加油站过来的,我们剩余的油至少要减去这段距离 如果我们在一个非加油站点,如果我们到达不了任意加油站点, ...
- BZOJ4144: [AMPPZ2014]Petrol(最短路 最小生成树)
题意 题目链接 Sol 做的时候忘记写题解了 可以参考这位大爷 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...
- 【BZOJ4144】[AMPPZ2014]Petrol 最短路+离线+最小生成树
[BZOJ4144][AMPPZ2014]Petrol Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油 ...
- 【BZOJ4144】[AMPPZ2014]Petrol(最短路+最小生成树+并查集)
Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是 ...
- BZOJ 4144: [AMPPZ2014]Petrol
4144: [AMPPZ2014]Petrol Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 457 Solved: 170[Submit][Sta ...
- 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)
关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
随机推荐
- 负载均衡(Load Balancing)学习笔记(一)
概述 在分布式系统中,负载均衡(Load Balancing)是一种将任务分派到多个服务端进程的方法.例如,将一个HTTP请求派发到实际的Web服务器中执行的过程就涉及负载均衡的实现.一个HTTP请求 ...
- scott/tiger is locked 解决办法
在plsql developer中要是以scott/tiger登录时提示ora-28000 the account is locked. 解决办法: 新装完Oracle10g后,用scott/tige ...
- NodeJS链接MySql数据库
//1.用npm命令安装mysql模块 npm install mysql //2.js文件中引入mysql模块 const mysqlModule = require('mysql'); //3.创 ...
- 根据模板导出Excel报表并复制模板生成多个Sheet页
因为最近用报表导出比较多,所有就提成了一个工具类,本工具类使用的场景为 根据提供的模板来导出Excel报表 并且可根据提供的模板Sheet页进行复制 从而实现多个Sheet页的需求, 使用本工具类时 ...
- Hadoop 的序列化
1. 序列化 1.1 序列化与反序列化的概念 序列化:是指将结构化对象转化成字节流在网上传输或写到磁盘进行永久存储的过程 反序列化:是指将字节流转回结构化对象的逆过程 1.2 序列化的应用 序列化用于 ...
- 【转】Redis学习---NoSQL和SQL的区别及使用场景
什么是NoSQL NoSQL,指的是非关系型的数据库.NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称,它具有非关系型.分布式.不提供ACID的数 ...
- Git如何永久删除文件(包括历史记录)
有些时候不小心上传了一些敏感文件(例如密码), 或者不想上传的文件(没及时或忘了加到.gitignore里的), 而且上传的文件又特别大的时候, 这将导致别人clone你的代码或下载zip包的时候也必 ...
- Python中日期时间案例演示
案例:准备10个人姓名,然后为这10个人随机生成生日[都是90后] 1.统计出那些人是夏季[6月-8月]出生的. 2.最大的比最小的大多少天 3.谁的生日最早,谁的生日最晚 备注:春季[3-5]夏季[ ...
- 浏览器加载和渲染html的顺序-css渲染效率的探究(转载)
1.浏览器加载和渲染html的顺序1.IE下载的顺序是从上到下,渲染的顺序也是从上到下,下载和渲染是同时进行的.2.在渲染到页面的某一部分时,其上面的所有部分都已经下载完成(并不是说所有相关联的元素都 ...
- October 21st 2017 Week 42nd Saturday
Only I can change my life. No one can do it for me. 只有我可以改变我的命运,没有人可以帮我做. Stop complaining about the ...