题意

题目链接

分析

  • 由于起点和终点都是加油站,所以我们可以把整个问题看成是从加油站到加油站。
  • 考虑一个暴力的做法,用最短路在 \(O(n^2\log n)\) 的时间内求出加油站两两之间的最短路。于是问题变成了最小瓶颈路。把所有询问离线跑最小生成树,判断连通性即可。
  • 考虑优化刚才的建边。假设 \(a,b,c\) 都是加油站。在 \(a \rightarrow b\) 的最短路径中出现了一个点 \(x\) 满足到 \(x\) 最近的点是 \(c\) ,那么我们完全可以从 \(a\) 直接走到 \(c\),而 \(c\) 又是当前最近的能够到达的加油站,所以这样走一定会更优。
  • 将加油站全部放入优先队列跑最短路,求出距离每个点最近的加油站 \({from}_x\) 和 \(x\) 到 \(from_x\) 的距离 \(dis_x\) 。
  • 枚举每条边如果两端的 \(from\) 不同则可以建立路径 \({from}_u \rightarrow {from}_v\), 距离 \({dis}_u+{dis}_v+w_e\)。然后再用 MST 求解即可。
  • 总时间复杂度为 \(O(n\log n)\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=2e5 + 7;
const LL inf=1e13;
int n,m,s,edc,q;
int head[N],vis[N],from[N],par[N],ans[N];
LL dis[N];
struct qry{
int u,v,id;LL d;
bool operator <(const qry &rhs)const{
return d<rhs.d;
}
}A[N],B[N];
struct edge{
int lst,to,c;
edge(){}edge(int lst,int to,int c):lst(lst),to(to),c(c){}
}e[N*4];
void Add(int a,int b,int c){
e[++edc]=edge(head[a],b,c),head[a]=edc;
e[++edc]=edge(head[b],a,c),head[b]=edc;
}
struct data{
int u;LL dis;
data(){}data(int u,LL dis):u(u),dis(dis){}
bool operator <(const data &rhs)const{
return rhs.dis<dis;
}
};
priority_queue<data>Q;
int getpar(int a){
return par[a]==a?a:par[a]=getpar(par[a]);
}
int main(){
n=gi(),s=gi(),m=gi();
rep(i,1,n) par[i]=i;
rep(i,1,n) dis[i]=inf;
rep(i,1,s) {
int x=gi();
dis[x]=0;from[x]=x;
Q.push(data(x,dis[x]));
}
rep(i,1,m) {
A[i].u=gi(),A[i].v=gi(),A[i].d=gi();
Add(A[i].u,A[i].v,A[i].d);
}
while(!Q.empty()){
int u=Q.top().u;Q.pop();
if(vis[u]) continue;vis[u]=1;
go(u)if(dis[u]+e[i].c<dis[v]){
dis[v]=dis[u]+e[i].c;
from[v]=from[u];
Q.push(data(v,dis[v]));
}
}
int cnt=0;
rep(i,1,m){
if(from[A[i].u]==from[A[i].v]) continue;
A[++cnt]=(qry){from[A[i].u],from[A[i].v],0,dis[A[i].u]+dis[A[i].v]+A[i].d};
}
q=gi();
rep(i,1,q)
B[i].u=gi(),B[i].v=gi(),B[i].d=gi(),B[i].id=i; sort(A+1,A+1+cnt);
sort(B+1,B+1+q);
A[cnt+1].d=inf;
int now=1;
rep(i,1,q){
for(;now<=cnt&&A[now].d<=B[i].d;++now){
int x=A[now].u,y=A[now].v;
par[getpar(x)]=getpar(y);
}
ans[B[i].id]=getpar(B[i].u)==getpar(B[i].v);
}
rep(i,1,q) puts(ans[i]?"TAK":"NIE");
return 0;
}

[BZOJ4144][AMPPZ2014]Petrol[多源最短路+MST]的更多相关文章

  1. 4144: [AMPPZ2014]Petrol (多源最短路+最小生成树+启发式合并)

    4144: [AMPPZ2014]Petrol Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 752  Solved: 298[Submit][Sta ...

  2. bzoj4144 [AMPPZ2014]Petrol

    link 题意: 给一个n个点m条边的带权无向图,其中k个点是加油站,每个加油站可以加满油,但不能超过车的油量上限.有q个询问,每次给出x,y,b,保证x,y都是加油站,问一辆油量上限为b的车从x出发 ...

  3. BZOJ4144 [AMPPZ2014]Petrol 【最短路 + 最小生成树】

    题目链接 BZOJ4144 题解 这题好妙啊,,orz 假设我们在一个非加油站点,那么我们一定是从加油站过来的,我们剩余的油至少要减去这段距离 如果我们在一个非加油站点,如果我们到达不了任意加油站点, ...

  4. BZOJ4144: [AMPPZ2014]Petrol(最短路 最小生成树)

    题意 题目链接 Sol 做的时候忘记写题解了 可以参考这位大爷 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...

  5. 【BZOJ4144】[AMPPZ2014]Petrol 最短路+离线+最小生成树

    [BZOJ4144][AMPPZ2014]Petrol Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油 ...

  6. 【BZOJ4144】[AMPPZ2014]Petrol(最短路+最小生成树+并查集)

    Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是 ...

  7. BZOJ 4144: [AMPPZ2014]Petrol

    4144: [AMPPZ2014]Petrol Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 457  Solved: 170[Submit][Sta ...

  8. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  9. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

随机推荐

  1. oracle EBS rtf报表不能输出模板样式

    1.需要定义中文的数据定义 2.缺少文件 cd $ADMIN_SCRIPTS_HOME prefs.ora 3.查看文档  文档 ID 1059712.1 (1)请求模版显示不出来 解决:模版定义中模 ...

  2. Oracle Dynamic Performance Views Version 12.2.0.1

    Oracle Dynamic Performance ViewsVersion 12.2.0.1 https://www.morganslibrary.org/reference/dyn_perf_v ...

  3. 像azure一样桌面显示Windows系统信息

    介绍 我们在使用azure的公有云时,可以看到打开虚拟机时右上角可以显示系统配置信息和公网私有地址,很好奇如何做到的,终于经过询问一位微软的朋友,他帮我找到了这个工具 工具地址:https://tec ...

  4. env :让系统决定你命令的位置

    如果我们使用lua 运行脚本程序,或者使用python执行程序.我们不用明确 python的位置,可以使用env 命令来运行: env 程序介绍: NAME env - run a program i ...

  5. python下以api形式调用tesseract识别图片验证码

    一.背景 之前在博文中介绍在python中如何调用tesseract ocr引擎,当时主要介绍了shell模式,shell模式需要安装tesseract程序,并且效率相对略低. 今天介绍api形式的调 ...

  6. JDOM 操作XML

    http://www.cnblogs.com/hoojo/archive/2011/08/11/2134638.html 可扩展标记语言——eXtensible Markup Language 用户可 ...

  7. 卷积神经网络入门:LeNet5(手写体数字识别)详解

    第一张图包括8层LeNet5卷积神经网络的结构图,以及其中最复杂的一层S2到C3的结构处理示意图. 第二张图及第三张图是用tensorflow重写LeNet5网络及其注释. 这是原始的LeNet5网络 ...

  8. 阿里八八Alpha阶段Scrum(1/12)

    任务分配 叶文滔:整体框架UI设计.作为组长进行任务协调 俞鋆:后端服务器及数据库搭建 王国超:日程模块多日显示部分设计 黄梅玲:日程模块单日显示部分设计 林炜鸿:日程模块文本添加部分设计 张岳.刘晓 ...

  9. Python接口自动化--requests 1

    # _*_ encoding:utf-8 _*_ import requests #请求博客园首页,无参数的get请求 r = requests.get('http://www.cnblogs.com ...

  10. python open 关于读、写、追加的总结

    # -*- coding: utf-8 -*- # 测试文件名为: # text.txt # 测试文件内容为: # abcdefg # 每次操作后将文件复原 # r # 以只读方式打开文件,文件不可写 ...