Examining the Rooms

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1661    Accepted Submission(s): 1015

Problem Description

A murder happened in the hotel. As the best detective in the town, you should examine all the N rooms of the hotel immediately. However, all the doors of the rooms are locked, and the keys are just locked in the rooms, what a trap! You know that there is exactly one key in each room, and all the possible distributions are of equal possibility. For example, if N = 3, there are 6 possible distributions, the possibility of each is 1/6. For convenience, we number the rooms from 1 to N, and the key for Room 1 is numbered Key 1, the key for Room 2 is Key 2, etc.
To examine all the rooms, you have to destroy some doors by force. But you don’t want to destroy too many, so you take the following strategy: At first, you have no keys in hand, so you randomly destroy a locked door, get into the room, examine it and fetch the key in it. Then maybe you can open another room with the new key, examine it and get the second key. Repeat this until you can’t open any new rooms. If there are still rooms un-examined, you have to randomly pick another unopened door to destroy by force, then repeat the procedure above, until all the rooms are examined.
Now you are only allowed to destroy at most K doors by force. What’s more, there lives a Very Important Person in Room 1. You are not allowed to destroy the doors of Room 1, that is, the only way to examine Room 1 is opening it with the corresponding key. You want to know what is the possibility of that you can examine all the rooms finally.
 

Input

The first line of the input contains an integer T (T ≤ 200), indicating the number of test cases. Then T cases follow. Each case contains a line with two numbers N and K. (1 < N ≤ 20, 1 ≤ K < N)
 

Output

Output one line for each case, indicating the corresponding possibility. Four digits after decimal point are preserved by rounding.
 

Sample Input

3
3 1
3 2
4 2
 

Sample Output

0.3333
0.6667
0.6250

Hint

Sample Explanation

When N = 3, there are 6 possible distributions of keys:

Room 1 Room 2 Room 3 Destroy Times
#1 Key 1 Key 2 Key 3 Impossible
#2 Key 1 Key 3 Key 2 Impossible
#3 Key 2 Key 1 Key 3 Two
#4 Key 3 Key 2 Key 1 Two
#5 Key 2 Key 3 Key 1 One
#6 Key 3 Key 1 Key 2 One

In the first two distributions, because Key 1 is locked in Room 1 itself and you can’t destroy Room 1, it is impossible to open Room 1.
In the third and forth distributions, you have to destroy Room 2 and 3 both. In the last two distributions, you only need to destroy one of Room 2 or Room

 

Source

 

第一类Stirling数 s(p,k)

    

s(p,k)的一个的组合学解释是:将p个物体排成k个非空循环排列的方法数。

s(p,k)的递推公式: s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1

边界条件:s(p,0)=0 ,p>=1  s(p,p)=1  ,p>=0

 

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空循环排列,这样前p-1种物品构成k-1个非空循环排列,方法数为s(p-1,k-1);

也可以前p-1种物品构成k个非空循环排列,而第p个物品插入第i个物品的左边,这有(p-1)*s(p-1,k)种方法。

 //2017-08-05
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long using namespace std; const int N = ;
ll factorial[N], stir1[N][N];//factorial[n]存n的阶乘,stir1为第一类斯特林数 int main()
{
int T, n, k;
cin >> T;
factorial[] = ;
for(int i = ; i < N; i++)
factorial[i] = factorial[i-]*i;
memset(stir1, , sizeof(stir1));
stir1[][] = ;
stir1[][] = ;
for(int i = ; i < N; i++){
for(int j = ; j <= i; j++)
stir1[i][j] = stir1[i-][j-] + (i-)*stir1[i-][j];
}
while(T--){
cin>>n>>k;
ll tmp = ;
for(int i = ; i <= k; i++)
tmp += stir1[n][i] - stir1[n-][i-];
printf("%.4lf\n", (double)tmp*1.0/factorial[n]);
} return ;
}

HDU3625(SummerTrainingDay05-N 第一类斯特林数)的更多相关文章

  1. 【组合数学:第一类斯特林数】【HDU3625】Examining the Rooms

    Examining the Rooms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  2. 【HDU 4372】 Count the Buildings (第一类斯特林数)

    Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  3. 如何快速求解第一类斯特林数--nlog^2n + nlogn

    目录 参考资料 前言 暴力 nlog^2n的做法 nlogn的做法 代码 参考资料 百度百科 斯特林数 学习笔记-by zhouzhendong 前言 首先是因为这道题,才去研究了这个玩意:[2019 ...

  4. 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation

    目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...

  5. CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增

    传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...

  6. 【CF715E】Complete the Permutations(容斥,第一类斯特林数)

    [CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...

  7. 【CF960G】Bandit Blues(第一类斯特林数,FFT)

    [CF960G]Bandit Blues(第一类斯特林数,FFT) 题面 洛谷 CF 求前缀最大值有\(a\)个,后缀最大值有\(b\)个的长度为\(n\)的排列个数. 题解 完完全全就是[FJOI] ...

  8. 【Luogu4609】建筑师(第一类斯特林数,组合数学)

    [Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\ ...

  9. CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】

    题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...

随机推荐

  1. iOS-项目开发1-UIImage

    UIImage+Extension /// 获取后的数据 a.length > b.length. 同时,使用UIIMageJPEGRepresnetation压缩图片,如果compressio ...

  2. Keras学习笔记——Hello Keras

    最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...

  3. Swift 里 Set(四)Testing for Membership

    即contains操作 /// - Parameter member: An element to look for in the set. /// - Returns: `true` if `mem ...

  4. 怎么把excel表格内的数据导入数据库?

    第一种方法: 思路:想要把excel表格内的数据直接导入数据库不是那么容易,可以把excel表格另存为.csv格式的文档(特点:内容以逗号分割):然后通过一系列的文档操作函数处理成为一个二维数组,然后 ...

  5. 使用命令行工具npm新创建一个vue项目

    使用vue开发项目的前期工作可以参考前面写的:  Vue环境搭建及node安装过程整理 Vue.js 提供一个官方命令行工具,可用于快速搭建大型单页应用.该工具提供开箱即用的构建工具配置,带来现代化的 ...

  6. redis安装(linux)

    redis安装 1. 安装tcl # cd /usr/local # wget http://downloads.sourceforge.net/tcl/tcl8.6.1-src.tar.gz # t ...

  7. WebForm - 文本框回车事件

    document.getElementById("Pwd").onkeyup = function (e) { ) { fun_Login(); } };

  8. (转)SSL/TLS 漏洞“受戒礼”,RC4算法关闭

    原文:https://blog.csdn.net/Nedved_L/article/details/81110603 SSL/TLS 漏洞“受戒礼” 一.漏洞分析事件起因2015年3月26日,国外数据 ...

  9. ElasticSearch 6.x 父子文档[join]分析

    ES6.0以后,索引的type只能有一个,使得父子结构变的不那么清晰,毕竟对于java开发者来说,index->db,type->table的结构比较容易理解. 按照官方的说明,之前一个索 ...

  10. Android使用Xutil3.0下载文件.md

    Android使用Xutil3.0下载文件.md 新建项目: 引入依赖: implementation 'org.xutils:xutils:3.5.0' 添加权限: <uses-permiss ...