Boost.Accumulators is both a library for incremental statistical computation as well as an extensible framework for incremental calculation in general. The library deals primarily with the concept of an accumulator, which is a primitive computational entity that accepts data one sample at a time and maintains some internal state. These accumulators may offload some of their computations on other accumulators, on which they depend. Accumulators are grouped within an accumulator set. Boost.Accumulators resolves the inter-dependencies between accumulators in a set and ensures that accumulators are processed in the proper order.

The rolling mean is the mean over the last N samples. It is computed by dividing the rolling sum by the rolling count.

Lazy
or iterative calculation of the mean over the last N samples. The lazy
calculation is associated with the tag::lazy_rolling_mean feature, and
the iterative calculation (which is the default) with the
tag::immediate_rolling_mean feature. Both can be extracted using the
tag::rolling_mean() extractor.
 
把连续取得的N个采样值看成一个队列,队列的长度固定为N,
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则),
把队列中的N个数据进行算术平均运算,获得新的滤波结果。

#include <iostream>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/rolling_mean.hpp>

using namespace boost::accumulators;

int main()
{
        accumulator_set<int, stats<tag::rolling_mean> > acc(tag::rolling_window::window_size = 7);

// push in some data ...
        acc(1);
        acc(2);
        acc(3);
        std::cout << "Mean: " << rolling_mean(acc) << std::endl;

acc(4);
        acc(5);
        acc(6);
        acc(7);
        std::cout << "Mean: " << rolling_mean(acc) << std::endl;

return 0;
}
输出
Mean: 2
Mean: 4

#include <iostream>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/mean.hpp>
#include <boost/accumulators/statistics/moment.hpp>

using namespace boost::accumulators;

int main()
{
    // Define an accumulator set for calculating the mean and the
    // 2nd moment ...
    accumulator_set<double, stats<tag::mean, tag::moment<2> > > acc;

// push in some data ...
    acc(1.2);
    acc(2.3);
    acc(3.4);
    acc(4.5);

// Display the results ...
    std::cout << "Mean: " << mean(acc) << std::endl;
    std::cout << "Moment: " << moment<2>(acc) << std::endl;

return 0;
}

结果

Mean: 2.85
Moment: 9.635

----------------------

Usage of the framework follows the following pattern:

1. Users build a computational object, called an accumulator_set<>, by selecting the
       computations in which they are interested, or authoring their own computational
       primitives which fit within the framework.

2. Users push data into the accumulator_set<> object one sample at a time.
    
   3. The accumulator_set<> computes the requested quantities in the most efficient method
        possible, resolving dependencies between requested calculations, possibly caching
        intermediate results.

The
Accumulators Framework defines the utilities needed for defining
primitive computational elements, called accumulators. It also provides
the accumulator_set<> type, described above.

// In header: <boost/accumulators/framework/accumulator_set.hpp>

template<typename Sample, typename Features, typename Weight>
struct accumulator_set {
  // types
  typedef Sample sample_type; // The type of the samples that will be accumulated.
  typedef Features features_type; // An MPL sequence of the features that should be accumulated.
  typedef Weight weight_type; // The type of the weight parameter. Must be a scalar. Defaults to void.
  typedef void result_type;

// member classes/structs/unions
  template<typename Feature>
  struct apply {
  };

可见 accumulator_set 是个类模板。模板的第一个参数表示样本的类型,
use the features<> template to specify a list of features to be calculated

template <class T>
class stats
{
public:
   stats()
      : m_min(tools::max_value<T>()),
        m_max(-tools::max_value<T>()),
        m_total(0),
        m_squared_total(0),
        m_count(0)
   {}
...

stats 也是一个类模版,T = Tag::mean 是参数类型。

namespace tag
{
    struct mean
      : depends_on<count, sum>
    {
        /// INTERNAL ONLY
        ///
        typedef accumulators::impl::mean_impl<mpl::_1, sum> impl;
    };

struct immediate_mean
      : depends_on<count>
    {
        /// INTERNAL ONLY
        ///
        typedef accumulators::impl::immediate_mean_impl<mpl::_1, tag::sample> impl;
    };

由此可见 tag 是一种命名空间 mean 是一个结构体

-------------------------关于 tag::moment< para > --------------------

Header

#include <boost/accumulators/statistics/moment.hpp>

Example

accumulator_set<int, stats<tag::moment<2> > > acc1;

acc1(2); // 4
acc1(4); // 16
acc1(5); // + 25
         // = 45 / 3 = 15

BOOST_CHECK_CLOSE(15., accumulators::moment<2>(acc1), 1e-5);

-----------------------------------------------------------------
accumulator_set<int, stats<tag::moment<5> > > acc2;

acc2(2); // 32
acc2(3); // 243
acc2(4); // 1024
acc2(5); // + 3125
         // = 4424 / 4 = 1106

BOOST_CHECK_CLOSE(1106., accumulators::moment<5>(acc2), 1e-5);

可见 tag::moment< para > 是一个结构体 就是一个类模板, 模板的参数para指定了矩的类型,
para = 2 是二次矩,也就是方差。

boost的accumulator rolling_mean的使用的更多相关文章

  1. boost number handling

    Boost.Integer defines specialized for integers. 1. types for integers with number of bits #include & ...

  2. boost强分类器的实现

    boost.cpp文件下: bool CvCascadeBoost::train( const CvFeatureEvaluator* _featureEvaluator, int _numSampl ...

  3. Boost信号/槽signals2

    信号槽是Qt框架中一个重要的部分,主要用来解耦一组互相协作的类,使用起来非常方便.项目中有同事引入了第三方的信号槽机制,其实Boost本身就有信号/槽,而且Boost的模块相对来说更稳定. signa ...

  4. 玩转Windows服务系列——使用Boost.Application快速构建Windows服务

    玩转Windows服务系列——创建Windows服务一文中,介绍了如何快速使用VS构建一个Windows服务.Debug.Release版本的注册和卸载,及其原理和服务运行.停止流程浅析分别介绍了Wi ...

  5. boost::function的用法

    本片文章主要介绍boost::function的用法. boost::function 就是一个函数的包装器(function wrapper),用来定义函数对象. 1.  介绍 Boost.Func ...

  6. Boost条件变量condition_variable_any

    Boost条件变量可以用来实现线程同步,它必须与互斥量配合使用.使用条件变量实现生产者消费者的简单例子如下,需要注意的是cond_put.wait(lock)是在等待条件满足.如果条件不满足,则释放锁 ...

  7. 新手,Visual Studio 2015 配置Boost库,如何编译和选择,遇到无法打开文件“libboost_thread-vc140-mt-gd-1_63.lib“的解决办法

    1,到官网下载最新的boost,www.boost.org 这里我下载的1-63版本. 2,安装,解压后运行bootstrap.bat文件.稍等一小会就OK. 3,编译boost库.注意一定要使用VS ...

  8. boost.python笔记

    boost.python笔记 标签: boost.python,python, C++ 简介 Boost.python是什么? 它是boost库的一部分,随boost一起安装,用来实现C++和Pyth ...

  9. vs2013给项目统一配置boost库

    1.打开项目,然后点击菜单中的 视图->其他窗口->属性管理器 2. 打开属性管理器,点击项目前的箭头,展开项目,找到debug或者release下面的Microsoft.Cpp.Win3 ...

随机推荐

  1. spring boot 微服务例子一

    package com.example.hello.demo; import org.springframework.boot.SpringApplication;import org.springf ...

  2. metasploit framework(一):基本使用

    它位于/usr/share/metasploit-framework 进入到modules目录,有六大模块 exploits:系统漏洞利用的流程,对系统漏洞注入一些特定的代码,使其覆盖程序执行寄存器, ...

  3. 简单web测试流程(转载)

    转载自 http://blog.csdn.net/qq_35885203 1.界面操作模式打开jmeter 进入jmeter安装目录的bin目录下,双击“jmeter.bat”文件即可打开jmeter ...

  4. 单点登录(SSO)解决方案之 CAS服务端数据源设置及页面改造

    接上篇 单点登录(SSO)解决方案之 CAS 入门案例 服务端数据源设置: 开发中,我们登录的user信息都是存在数据库中的,下面说一下如何让用户名密码从我们的数据库表中做验证. 案例中我最终把cas ...

  5. 【Django】关于前端配置

    今天在网上课程了学了一下前端配置,感觉搭这个环境安装了不少东西,自己都有点混乱,现在整理一下思路: 1.nvm 即Note Version Manager用来管理node版本的工具: windows版 ...

  6. rancher2 接NFS存储

    一.NFS服务器搭建 略 二.rancher 2配置--PV配置 集群名称---Storage --增加 Persistent Volume 名称任意,卷插件选nfs Share 容量按需求 插件配置 ...

  7. YouTube Cobalt 浏览器支持

    Cobalt介绍: Cobalt浏览器是YouTube公司定制的一款专用浏览器,Cobalt的使命,是在电视机端,使用灵活多变web形式实现流畅的交互操作,从而替代Android,与普通浏览器不同,C ...

  8. poj1019(打表预处理+数学)

    题目链接:http://poj.org/problem?id=1019 题意:对于序列1121231234...,求第i个数字(i<=2147483647). 思路:记第一组为1,第二组为12, ...

  9. centos 7 下 cobbler 安装

    一.cobbler 介绍: Cobbler 是一个系统启动服务(boot server),可以通过网络启动(PXE)的方式用来快速安装.重装物理服务器和虚拟机,支持安装不同的 Linux 发行版和 W ...

  10. 使用SqlBulkCopy批量插入数据,测试20万条用时5秒

    using System;using System.Collections.Generic;using System.Linq;using System.Text; using System.Data ...