直接给了一个置换群(当然要自己手动加上不洗牌的情况)。考虑求不动点数量即可。对于一个置换,求出所有循环的长度,然后设f[i][x][y]为给前i个循环着色后,用了x张红色卡片、y张绿色卡片的方案数,dp一发即可。

  upd:为啥我写的应该不是假算法却好像也被hack掉了?不管了已经忘了这是啥题肯定哪写挂了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 66
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,A,B,C,m,P,a[N],cycle[N],f[N][N][N],ans;
bool flag[N];
int calc()
{
memset(f,,sizeof(f));f[][][]=;int s=;
for (int j=;j<=n;j++)
{
s+=cycle[j];
for (int x=;x<=A;x++)
for (int y=;y<=B;y++)
{
int z=s-x-y;if (z>C) continue;
if (x>=cycle[j]) f[j][x][y]+=f[j-][x-cycle[j]][y];
if (y>=cycle[j]) f[j][x][y]+=f[j-][x][y-cycle[j]];
if (z>=cycle[j]) f[j][x][y]+=f[j-][x][y];
f[j][x][y]%=P;
}
}
return f[n][A][B];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1004.in","r",stdin);
freopen("bzoj1004.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
A=read(),B=read(),C=read(),m=read(),P=read();
for (int i=;i<=m;i++)
{
for (int j=;j<=n;j++)
a[read()]=j;
memset(flag,,sizeof(flag));n=;
for (int j=;j<=n;j++)
if (!flag[j])
{
int x=a[j];flag[j]=;cycle[++n]=;
while (x!=j) flag[x]=,cycle[n]++,x=a[x];
}
ans+=calc();
}
n=A+B+C,m++;for (int i=;i<=n;i++) cycle[i]=;ans+=calc();
for (int i=;i<P;i++) if (i*m%P==) {ans=ans*i%P;break;}
cout<<ans;
return ;
}

BZOJ1004 HNOI2008Cards(Burnside引理+动态规划)的更多相关文章

  1. [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  2. 洛谷P1446/BZOJ1004 Cards Burnside引理+01背包

    题意:有n张牌,有R+G+B=n的3种颜色及其数量,要求用这三种颜色去染n张牌.n张牌有m中洗牌方式,问在不同洗牌方式下本质相同的染色方案数. 解法:这道题非常有意思,题解参考Hzwer学长的.我这里 ...

  3. 【BZOJ1004】Cards(组合数学,Burnside引理)

    [BZOJ1004]Cards(组合数学,Burnside引理) 题面 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Su ...

  4. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  5. [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  6. 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP

    题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...

  7. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  8. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  9. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

随机推荐

  1. lwip lwiperf 方法进行性能测试 4.5MB/S

    硬件配置: STM32F407 + DP83848 + FreeRTOS V10.1.1 + LWIP 2.1.2    2018年12月5日14:31:24 1.先读取 PHY 寄存器 , 查看 自 ...

  2. 使用Novell.Directory.Ldap.NETStandard在.NET Core中验证AD域账号

    Novell.Directory.Ldap.NETStandard是一个在.NET Core中,既支持Windows平台,又支持Linux平台,进行Windows AD域操作的Nuget包. 首先我们 ...

  3. 20155338课程设计个人报告——基于ARM实验箱的Android交友软件的设计与实现

    课程设计个人报告--基于ARM实验箱的Android交友软件的设计与实现 个人贡献 实验环境的搭建 代码调试 在电脑上成功运行 研究程序代码撰写小组报告 一.实验环境 1.Eclipse软件开发环境: ...

  4. 汇编 switch case

    知识点: switch case生成的汇编框架 逆向汇编代码还原成C++代码 一.了解switch case结构 .普通情况 |. 83C4 ADD ESP, |. C745 FC >MOV ...

  5. 利用Python统计微信联系人男女比例以及简单的地区分布

    寒暄的话不多说,直接进入主题. 运行效果图: [准备环境] Python版本:v3.5及其以上 开发工具:随意,此处使用Pycharm [依赖包] 1.itchat (CMD运行:pip instal ...

  6. java过滤器Filter笔记

    一.Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术之一,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp,Servlet, 静 ...

  7. JavaScript快速入门-ECMAScript本地对象(String)

    一.String对象 String对象和python中的字符串一样,也有很多方法,这些方法大概分为以下种类: 1.索引和查找 1.charAt()   返回指定位置的字符. 2.charCodeAt( ...

  8. PowerShell 操作 Azure SQL Active Geo-Replication

    前文中我们比较全面的介绍了 Azure SQL Database Active Geo-Replication 的主要特点和优势.接下来我们将从自动化的角度介绍如何通过 PowerShell 在项目中 ...

  9. 关于Map迭代循环,key和value的顺序问题

    使用Hashtable,keySet()返回的顺序为降序(key降顺序) ---->6, 5, 4, 3, 2, 1使用TreeMap,keySet()返回的顺序为升序(key升顺序) ---- ...

  10. MOSFET中的重要参数

    最近在调试MOSFET电路中,发现了更多问题,比如同样的PI反馈控制电路可以很好的控制PMOS工作,却对NMOS不能很好控制.当然你肯定会说那是因为PMOS和NMOS不同呀,这自然没有错,我在上一篇文 ...