直接给了一个置换群(当然要自己手动加上不洗牌的情况)。考虑求不动点数量即可。对于一个置换,求出所有循环的长度,然后设f[i][x][y]为给前i个循环着色后,用了x张红色卡片、y张绿色卡片的方案数,dp一发即可。

  upd:为啥我写的应该不是假算法却好像也被hack掉了?不管了已经忘了这是啥题肯定哪写挂了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 66
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,A,B,C,m,P,a[N],cycle[N],f[N][N][N],ans;
bool flag[N];
int calc()
{
memset(f,,sizeof(f));f[][][]=;int s=;
for (int j=;j<=n;j++)
{
s+=cycle[j];
for (int x=;x<=A;x++)
for (int y=;y<=B;y++)
{
int z=s-x-y;if (z>C) continue;
if (x>=cycle[j]) f[j][x][y]+=f[j-][x-cycle[j]][y];
if (y>=cycle[j]) f[j][x][y]+=f[j-][x][y-cycle[j]];
if (z>=cycle[j]) f[j][x][y]+=f[j-][x][y];
f[j][x][y]%=P;
}
}
return f[n][A][B];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1004.in","r",stdin);
freopen("bzoj1004.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
A=read(),B=read(),C=read(),m=read(),P=read();
for (int i=;i<=m;i++)
{
for (int j=;j<=n;j++)
a[read()]=j;
memset(flag,,sizeof(flag));n=;
for (int j=;j<=n;j++)
if (!flag[j])
{
int x=a[j];flag[j]=;cycle[++n]=;
while (x!=j) flag[x]=,cycle[n]++,x=a[x];
}
ans+=calc();
}
n=A+B+C,m++;for (int i=;i<=n;i++) cycle[i]=;ans+=calc();
for (int i=;i<P;i++) if (i*m%P==) {ans=ans*i%P;break;}
cout<<ans;
return ;
}

BZOJ1004 HNOI2008Cards(Burnside引理+动态规划)的更多相关文章

  1. [bzoj1004][HNOI2008][Cards] (置换群+Burnside引理+动态规划)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  2. 洛谷P1446/BZOJ1004 Cards Burnside引理+01背包

    题意:有n张牌,有R+G+B=n的3种颜色及其数量,要求用这三种颜色去染n张牌.n张牌有m中洗牌方式,问在不同洗牌方式下本质相同的染色方案数. 解法:这道题非常有意思,题解参考Hzwer学长的.我这里 ...

  3. 【BZOJ1004】Cards(组合数学,Burnside引理)

    [BZOJ1004]Cards(组合数学,Burnside引理) 题面 Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Su ...

  4. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  5. [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  6. 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP

    题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...

  7. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  8. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  9. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

随机推荐

  1. CentOS配置Hive

    hive搭建共分为三种模式:1.embedded,2.local,3.remote server 在这里,主要是配置第3种模式:remote server模式,如下图所示: 我的环境共三台虚拟机:Ho ...

  2. javaScript之jQuery框架

    一.jQuery简介   jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库(或JavaScript框架).jQuery设计的宗旨 ...

  3. 20155330 《网络对抗》 Exp6 信息搜集与漏洞扫描

    20155330 <网络对抗> Exp6 信息搜集与漏洞扫描 基础问题回答 哪些组织负责DNS,IP的管理? 互联网名称与数字地址分配机构(The Internet Corporation ...

  4. 20155338《网络对抗》Exp6 信息搜集与漏洞扫描

    20155338<网络对抗>Exp6 信息搜集与漏洞扫描 实验过程 外围信息搜集 (1)whois域名注册信息查询 下面是搜索hao123.com得到的结果 下面这个也是同理 (2)nsl ...

  5. js实现60秒倒计时效果(使用了jQuery)

    今天碰到要实现一个类似那种短信验证码60秒倒计时的需求,好久不写js,有点手生.把代码记录下,方便后续查阅. 这里我用了jQuey,毕竟写起来简洁点.下面直接看效果和代码. 一.效果          ...

  6. DelayQueue 订单限时支付实例

    1.订单实体 package com.zy.entity; import java.util.Date; import java.util.concurrent.Delayed; import jav ...

  7. 机器学习之线性回归使用Python和tensorflow实现

    导入依赖包 import tensorflow as tf import numpy as np import matplotlib.pylab as plt from pylab import mp ...

  8. TCP三路握手,本质是一个通信原理相关的问题

    在通信系统中,最基本的信息的传递都需要两步,发送方发送的消息和对方的回复确认:A->B Send, B->A Reply(ACK).如果多接触一下其他行业的通信流程和规范,例如航空.铁路调 ...

  9. PHP学习 Object Oriented 面向对象 OO

    定义类class class_name [extends partclass_name]{public private protected var property_name = value;publ ...

  10. 启动Tomcat 卡在 Initializing Spring FrameworkServlet 'SpringMVC'

    使用Myeclipse进行项目开发时莫名其妙启动项目卡在 Initializing Spring FrameworkServlet 'SpringMVC' ,然后等待几分钟后项目才启动起来. 在之前也 ...