题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1576

题目:

Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 
Output
对应每组数据输出(A/B)%9973。
 
Sample Input
2
1000 53
87 123456789
 
Sample Output
7922
6060
 /*
问题
给出n(0 <= n < 9973)和B(1 <= B <= 10^9),计算(A/B)%9973
其中n=A%9973,A必能被B整除,且gcd(B,9973) = 1 解题思路
设X=(A/B)%9973,则A/B=K*9973+X(K为正整数)
即A=K*9973*B+X*B 又n=A%9973,则A=p*9973+n 结合两式可得 p*9973+n=K*9973*B+X*B
移项可得 p*9973-K*9973*B=X*B-n
即9973*(p-K*B)=X*B-n
显然左边对9973取余等于0,那么0=(X*B-n)%9973
此时直接枚举X取值即可,另外注意到X*B可能对超出int范围,需要用到同余运算,当然直接将其转换为long long类型也可。
(a-b)%n=((a%n)-(b%n)+n)%n
(a*b)%n=(a%n)*(b%n)%n
故(x*B-n)%9973=( ((X%9973)*(B%9973)%9973) -(n%9973)+9973 )%9973
*/ #include<cstdio> int main()
{
int t,n,X;
long long B;
scanf("%d",&t);
while(t--){
scanf("%d%lld",&n,&B);
for(X=;;X++){
if((((X%)*(B%)%) - (n%)+)% == ){
printf("%d\n",X);
break;
}
}
}
return ;
}
 

HDU 1576 A/B(欧几里德算法延伸)的更多相关文章

  1. HDU 1576 A/B 扩展欧几里德算法

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  2. hdu 1576 A/B (扩展欧几里德简单运用)

    http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Memory Lim ...

  3. HDU 1576 A/B (两种解法)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 分析:等式枚举法,由题意可得:, ,代入 ,    得:,把变量 合在一起得: :即满足 为 倍 ...

  4. hdu 1576 A/B(拓展欧几里得)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  6. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  7. POJ 1061青蛙的约会(拓展欧几里德算法)

    题目链接: 传送门 青蛙的约会 Time Limit: 1000MS     Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...

  8. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  9. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

随机推荐

  1. 在Delphi中处理word文档与数据库的互联

    在Delphi中处理word文档与数据库的互联 ---- 目前,Delphi被越来越多的人选中作为MIS系统开发中的前台工具.在以Delphi为前台,一些大型数据库为后台的MIS系统中,图形的处理不可 ...

  2. [eetcode 10]Regular Expression Matching

    1 题目: Implement regular expression matching with support for '.' and '*'. '.' Matches any single cha ...

  3. hog行人检测

    本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类.其实使用起来是很简单的,从后面的代码就可以看出来.本文参考的资料为opencv自带的sample. 关于op ...

  4. 【转载】Configure the max limit for concurrent TCP connections

    转载地址:http://smallvoid.com/article/winnt-tcpip-max-limit.html To keep the TCP/IP stack from taking al ...

  5. docker - 从安装到部署一个web应用(go、java)

    一:安装docker 1.https://docs.docker.com/engine/installation/binaries/ 下载docker最新版二进制tar.gz linux下: wget ...

  6. [LintCode] Longest Increasing Continuous subsequence

    http://www.lintcode.com/en/problem/longest-increasing-continuous-subsequence/# Give you an integer a ...

  7. JS学习笔记1_基础与常识

    1.六种数据类型 5种基础的:Undefined,Null,Boolean,Number,String(其中Undefined派生自Null) 1种复杂的:Object(本质是一组无序键值对) 2.字 ...

  8. ASP.NET MVC NPOI导入Excel DataTable批量导入到数据库

    使用NPOI导入Excel 首先在MVC项目中导入NPOI 查询NPOI安装,排序依据,选择:最高下载量,选择第一个. 在控制器中创建ExcelController 在Index视图中写入代码: @u ...

  9. ADB 命令介绍

    Android adb shell am 命令介绍 am这个指令是 activity manager的缩写.这个命令可以启动Activity.打开或关闭进程.发送广播等操作. am命令格式如下 adb ...

  10. PHP进行数据库操作时遇到的一个问题

    PHP进行数据库操作时遇到的一个问题 昨天在进行数据库操作时,遇到了一个问题(用的是 wampserver 环境): <?php $link = @mysqli_connect('localho ...