CF23 E. Tree 树形dp+高精度
题目链接
题解
CF竟让卡常QAQ
dp+高精度
dp[x][j]表示以x为根的子树,x所属的联通块大小为j,的最大乘积(不带j这块
最后f[x]维护以x为根的子树的最大答案
有点卡内存...高精压了4位
看了题解,了解到,其实这个dp的复杂度其实是O(n^2)
每次转移是复杂度是x之前的子树的sz * 当前子树的sz
相当于之前子树所有点和当前子树的点组成的点对数
而每个点对只会在lca处被计算一次
所以复杂度O(n^2)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' ||c > '9')c = getchar();
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
const int L = 10000;
const int maxn = 701;
const int maxlen = 61;
struct Bignum{
int num[maxlen];
int len;
Bignum () {memset(num,0,sizeof num); len = 0; }
void print() {
for(int i = len;i;-- i)
if(i != len) {
if(num[i - 1] < L / 10) {
printf("0");
if(num[i - 1] < L / 100) {
printf("0");
if(num[i - 1] < L / 1000) printf("0");
}
}
printf("%d",num[i - 1]);
} else printf("%d",num[i - 1]);
puts("");
}
} dp[maxn][maxn],Max[maxn];
Bignum operator * (Bignum a,Bignum b) {
int len = 0;
Bignum ret;
for(int i = 0;i < a.len;i ++) for(int j = 0;j < b.len;j ++) {
ret.num[i + j] += a.num[i] * b.num[j];
if(ret.num[i + j] >= L) {
ret.num[i + j + 1] += ret.num[i + j] / L;
ret.num[i + j] %= L;
}
}
len = a.len + b.len;
while(ret.num[len-1] == 0 && len > 1) len --;
ret.len = len;
return ret;
}
Bignum operator / (Bignum a,int b) {
int len = a.len;
Bignum ret;
if(!b) return ret;
for(int i = 0;i < len;i ++) {
ret.num[i] += a.num[i]* b;
if(ret.num[i] >= L) {
ret.num[i+1] += ret.num[i] / L;
ret.num[i] %= L;
}
}
while(ret.num[len] > 0) ret.num[len+1] = ret.num[len] / L, ret.num[len ++] %= L;
ret.len = len;
return ret;
}
Bignum max(Bignum a,Bignum b) {
if(a.len < b.len) return b;
if(a.len > b.len) return a;
for(int i = a.len-1;i >= 0;i --) {
if(a.num[i] < b.num[i]) return b;
if(a.num[i] > b.num[i]) return a;
}
return b;
}
//-------------------------------
struct node {
int v,next;
} edge[maxn << 1];
int head[maxn],num = 0;
inline void add_edge(int u,int v) {
edge[++ num].v = v;edge[num].next = head[u];head[u] = num;
} int n;
int siz[maxn];
void dfs(int x,int fa) {
siz[x] = 1;
dp[x][1].len = 1; dp[x][1].num[0] = 1;
for(int i = head[x];i;i = edge[i].next) {
int v = edge[i].v;
if(v == fa) continue;
dfs(v,x);
siz[x] += siz[v];
}
for(int i = head[x];i;i = edge[i].next) {
int v = edge[i].v;
if(v == fa) continue;
for(int i = siz[x];i;-- i) {
if(dp[x][i].len)
for(int j = 1;j <= siz[v];++ j)
if(dp[v][j].len) dp[x][i + j] = max(dp[x][i + j],dp[x][i] * dp[v][j]);
dp[x][i] = dp[x][i] * Max[v];
}
}
for(int i = siz[x];i ;-- i) Max[x] = max(Max[x],dp[x][i] / i);
}
int main() {
n = read();
for(int i = 1,u,v;i < n;++ i) {
u = read();v = read();
add_edge(u,v); add_edge(v,u);
}
dfs(1,0);
Max[1].print();
CF23 E. Tree 树形dp+高精度的更多相关文章
- 熟练剖分(tree) 树形DP
熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...
- hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)
题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others) Memory Limit: ...
- CF 461B Appleman and Tree 树形DP
Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...
- codeforces 161D Distance in Tree 树形dp
题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...
- hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。
/** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...
- 5.10 省选模拟赛 tree 树形dp 逆元
LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...
- Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】
题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...
- codeforces Round #263(div2) D. Appleman and Tree 树形dp
题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...
- POJ 2486 Apple Tree(树形DP)
题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...
随机推荐
- 函数和常用模块【day06】:shutil模块(四)
本节内容 简书 模块详解 压缩解压 一.简述 我们在日常处理文件时,经常用到os模块,但是有的时候你会发现,像拷贝.删除.打包.压缩等文件操作,在os模块中没有对应的函数去操作,下面我们就来讲讲高级的 ...
- 在android手机上通过Html5Plus调用java类。
关于html5plus的资料参考http://www.html5plus.org/ 最近通过html5做手机app,其中涉及到网络通过,必须采用原生的socket,websocket无法满足要求,ht ...
- bzoj千题计划207:bzoj1879: [Sdoi2009]Bill的挑战
http://www.lydsy.com/JudgeOnline/problem.php?id=1879 f[i][j] 表示匹配了i个字符,匹配字符串的状态为j的方案数 枚举下一个字符是什么 计算加 ...
- Algorithm(1) - Karatsuba multiplication
这个系列主要是记一下目前效率较高或者比较出名的一些算法. Karatsuba multiplication: x=5678 then: a=56 b=67 y=1234 c= ...
- C++--------------------------------指针和数组替换使用原因
马上要考试了,复习数据结构中,对C的指针不太了解,在严蔚敏<数据结构(C语言版)>中,发现p22定义顺序存储结构: typedef srtuct{ ElemType *elem; //存储 ...
- bzoj 1432 数学(找规律)
我们可以发现所有的情况(除n=1时),都可以找到两个交叉的直线,就是第一层的那 两个线段所在的直线如图中左 那么我们以这个为准,两边对称着加直线,会得到右图,每一层是折线,且每 加一对儿就多两条线段, ...
- Linux内核中进程上下文、中断上下文、原子上下文、用户上下文的理解【转】
转自:http://blog.csdn.net/laoliu_lcl/article/details/39972459 进程上下文和中断上下文是操作系统中很重要的两个概念,这两个概念在操作系统课程中不 ...
- PHP中VC6、VC9、TS、NTS版本区别与用法
1. VC6与VC9的区别: VC6 版本是使用 Visual Studio 6 编译器编译的,如果你的 PHP 是用 Apache 来架设的,那你就选择 VC6 版本. VC9 版本是使用 Vis ...
- python 列表元组加减乘除法
元组(typle)列表(list)没有减法和除法,但有加法和乘法. 1.加法,即把元素相加.只可以list和tuple相加,不能加其他类型. t= (1, ) + (2, 3, 4) print(t, ...
- node.js开发web
1.安装express框架 使用npm install -g express安装express后,在命令行中执行express,提示没有此命令 原因是在新版的express中命令行需要单独安装 npm ...