题目链接 BZOJ

洛谷

先求最短路树。考虑每一条非树边(u,v,len),设w=LCA(u,v),这条边会对w->v上的点x(x!=w)有dis[u]+dis[v]-dis[x]+len的距离。

每条边用dis[u]+div[v]+len更新链。树剖就做完了。

因为每个点只需取最小值,所以把边按dis[u]+div[v]+len排序后并查集更新链也行。

复杂度\(O(n\alpha(n)+mlogm)\)。

树DP失败,好像没法处理子树内的ndis互相更新。。唉。

//12680kb	556ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define mp std::make_pair
#define pr std::pair<int,int>
const int N=1e5+5,M=4e5+5,INF=0x3f3f3f3f; int n,fa[N],ff[N],Enum,H[N],nxt[M],to[M],len[M],dis[N],ans[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Edge
{
int u,v,w;
bool operator <(const Edge &x)const{
return w<x.w;
}
}e[M]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int w,int u,int v)//order
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, len[Enum]=w;
}
void Dijkstra()
{
static bool vis[N];
static std::priority_queue<pr> q;
memset(dis,0x3f,sizeof dis);
q.push(mp(dis[1]=0,1));
while(!q.empty())
{
int x=q.top().second; q.pop();
if(vis[x]) continue;
vis[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if(dis[v=to[i]]>dis[x]+len[i])
fa[v]=x, q.push(mp(-(dis[v]=dis[x]+len[i]),v));
}
}
inline int Find(int x)
{
return x==ff[x]?x:ff[x]=Find(ff[x]);
}
void Update(int u,int v,int val)
{
u=Find(u), v=Find(v);
while(u!=v)
{
if(dis[u]<dis[v]) std::swap(u,v);//没必要用dep,保证在一条链上时上下不颠倒就行了
ans[u]=val-dis[u];
u=ff[u]=Find(fa[u]);
}
} int main()
{
n=read(), Enum=1;
for(int m=read(),i=1; i<=m; ++i) AE(read(),read(),read());
Dijkstra();
int t=0;
for(int i=2,lim=Enum; i<=lim; i+=2)
{
int u=to[i], v=to[i^1];
if(fa[u]==v||fa[v]==u) continue;
e[++t]=(Edge){u,v,dis[u]+dis[v]+len[i]};
}
std::sort(e+1,e+1+t);
for(int i=1; i<=n; ++i) ff[i]=i;
for(int i=1; i<=t; ++i) Update(e[i].u,e[i].v,e[i].w);
for(int i=2; i<=n; ++i) printf("%d\n",ans[i]?ans[i]:-1); return 0;
}

纪念一下10分的树DP

#include <queue>
#include <cstdio>
#include <cctype>
#include <vector>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define mp std::make_pair
#define pr std::pair<LL,int>
#define Vec std::vector<int>
typedef long long LL;
const int N=1e5+5,M=4e5+5;
const LL INF=0x3f3f3f3f3f3f3f3f; int n,pre[N],dep[N],fa[N],sz[N],son[N],in[N],out[N],ref[N],Index,top[N];
LL dis[N],ndis[N],ans[N];
bool is_t[M];
Vec vec[N];
bool de;
struct Graph
{
int Enum,H[N],nxt[M],fr[M],to[M];
LL len[M];
inline void AE(int w,int u,int v)//order
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, len[Enum]=w;
}
inline void AE_d(int u,int v,LL w)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;
}
}T,G; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Dijkstra()
{
static bool vis[N];
static std::priority_queue<pr> q;
memset(dis,0x3f,sizeof dis);
q.push(mp(dis[1]=0,1));
while(!q.empty())
{
int x=q.top().second; q.pop();
if(vis[x]) continue;
vis[x]=1;
for(int i=G.H[x],v; i; i=G.nxt[i])
if(dis[v=G.to[i]]>dis[x]+G.len[i])
pre[v]=i, q.push(mp(-(dis[v]=dis[x]+G.len[i]),v));
}
for(int i=2; i<=n; ++i) is_t[pre[i]]=1, T.AE_d(G.fr[pre[i]],i,G.len[pre[i]]);
}
void DFS1(int x)
{
int mx=0; sz[x]=1;
for(int i=T.H[x],v; i; i=T.nxt[i])
{
fa[v=T.to[i]]=x, dep[v]=dep[x]+1, DFS1(v), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v], son[x]=v;
}
}
void DFS2(int x,int tp)
{
ref[in[x]=++Index]=x, top[x]=tp;
if(son[x])
{
DFS2(son[x],tp);
for(int i=T.H[x]; i; i=T.nxt[i])
if(T.to[i]!=son[x]) DFS2(T.to[i],T.to[i]);
}
out[x]=Index;
}
inline int LCA(int u,int v)
{
while(top[u]!=top[v]) dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
return dep[u]>dep[v]?v:u;
}
inline int LCA2(int u,int lca)
{
int las=u;
while(top[u]!=top[lca]) u=fa[las=top[u]];
return u==lca?las:ref[in[lca]+1];
}
LL Solve(int x)
{
if(de) printf("\nBegin!\nans[%d]=%I64d\n",x,ans[x]);
for(int i=G.H[x],v; i; i=G.nxt[i])
if((v=G.to[i])!=fa[x]&&(in[v=G.to[i]]<in[x]||out[v]>out[x]))
de&&(printf("ans:%d->%d:%I64d\n",v,x,dis[v]+G.len[i])),
ans[x]=std::min(ans[x],dis[v]+G.len[i]);
if(de) printf("update by other tree:ans[%d]=%I64d\n",x,ans[x]);
for(int i=0,l=vec[x].size(); i<l; ++i)
{
int id=vec[x][i],u=G.fr[id],v=G.to[id];
de&&(printf("ndis:%d->%d:%I64d\n",u,v,dis[u]+G.len[id]));
ndis[v]=std::min(ndis[v],dis[u]+G.len[id]);
}
LL mn=INF;
for(int i=T.H[x],v; i; i=T.nxt[i])
mn=std::min(mn,Solve(T.to[i])+T.len[i]);
ndis[x]=std::min(ndis[x],mn), ans[x]=std::min(ans[x],ndis[x]);
if(de) printf("End ans[%d]=%I64d ndis[%d]=%I64d mn=%I64d\n",x,ans[x],x,ndis[x],mn);
return ndis[x];
} int main()
{
freopen("C.in","r",stdin);
freopen("C.out","w",stdout); n=read(), G.Enum=1;
for(int m=read(),i=1; i<=m; ++i) G.AE(read(),read(),read());
Dijkstra(), DFS1(1), DFS2(1,1);
de=0;
if(de) for(int i=1; i<=n; ++i) printf("%d:fa:%d in:%d out:%d top:%d\n",i,fa[i],in[i],out[i],top[i]);
for(int i=2,lim=G.Enum; i<=lim; ++i)
{
if(is_t[i]||is_t[i^1]) continue;
int u=G.fr[i], v=G.to[i], w=LCA(u,v), w2=LCA2(v,w);
// printf("LCA2(%d,%d):%d\n",u,v,w2);
vec[w2].push_back(i);
}
memset(ans,0x3f,sizeof ans);
memset(ndis,0x3f,sizeof ndis);
Solve(1);
for(int i=2; i<=n; ++i) printf("%I64d\n",ans[i]==INF?-1ll:ans[i]); return 0;
}

BZOJ.1576.[Usaco2009 Jan]安全路经Travel(树形DP 并查集)的更多相关文章

  1. bzoj 1576: [Usaco2009 Jan]安全路经Travel 树链剖分

    1576: [Usaco2009 Jan]安全路经Travel Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 665  Solved: 227[Sub ...

  2. 【BZOJ1576】[Usaco2009 Jan]安全路经Travel 最短路+并查集

    [BZOJ1576][Usaco2009 Jan]安全路经Travel Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, ...

  3. [BZOJ 1576] [Usaco2009 Jan] 安全路经Travel 【树链剖分】

    题目链接: BZOJ - 1576 题目分析 首先Orz Hzwer的题解. 先使用 dijikstra 求出最短路径树. 那么对于一条不在最短路径树上的边 (u -> v, w) 我们可以先沿 ...

  4. bzoj 1576: [Usaco2009 Jan]安全路经Travel——并查集+dijkstra

    Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...

  5. bzoj 1576 [Usaco2009 Jan]安全路经Travel(树链剖分,线段树)

    [题意] 给定一个无向图,找到1-i所有的次短路经,要求与最短路径的最后一条边不重叠. [思路] 首先用dijkstra算法构造以1为根的最短路树. 将一条无向边看作两条有向边,考察一条不在最短路树上 ...

  6. bzoj 1576: [Usaco2009 Jan]安全路经Travel【spfa+树链剖分+线段树】

    这几天写USACO水题脑子锈住了--上来就贪心,一交就WA 事实上这个是一个叫最短路树的东西,因为能保证只有一条最短路,所以所有最短路合起来是一棵以1为根的树,并且在这棵树上,每个点被精灵占据的路是它 ...

  7. BZOJ 1576: [Usaco2009 Jan]安全路经Travel

    日常自闭半小时后看题解,太弱了qwq. 感觉这道题还是比较难的,解法十分巧妙,不容易想到. 首先题目说了起点到每个点的最短路都是唯一的,那么对这个图求最短路图必定是一棵树,而且这棵树是唯一的. 那么我 ...

  8. BZOJ1576: [Usaco2009 Jan]安全路经Travel(最短路 并查集)

    题意 给你一张无向图,保证从1号点到每个点的最短路唯一.对于每个点求出删掉号点到它的最短路上的最后一条边(就是这条路径上与他自己相连的那条边)后1号点到它的最短路的长度 Sol emmm,考场上想了个 ...

  9. 【BZOJ】1576 [Usaco2009 Jan]安全路经Travel

    [算法]最短路树+(树链剖分+线段树)||最短路树+并查集 [题解] 两种方法的思想是一样的,首先题目限制了最短路树唯一. 那么建出最短路树后,就是询问对于每个点断掉父边后重新找路径的最小值,其它路径 ...

随机推荐

  1. bzoj千题计划212:bzoj1864: [Zjoi2006]三色二叉树

    http://www.lydsy.com/JudgeOnline/problem.php?id=1864 #include<cstdio> #include<cstring> ...

  2. li分两列显示

    只要控制了li的宽度,利用浮动就能实现<style type="text/css"> .my ul { width: 210px; } .my li { width: ...

  3. html5 canvas(基本矩形)

    先从简单的开始 fillRect(x,y,width,height) 在坐标x,y的位置加上一个宽,高   如: fillRect(0,0,500,500)//在坐标0,0处加上一个宽高500的填充矩 ...

  4. expect 交互 之双引号较长变量

    交互双引号较长变量  #!/bin/bash RemoteUser=xuesong12 Ip=192.168.1.2 RemotePasswd=xuesong Cmd="/bin/echo ...

  5. Value = undefined

    Value = undefined Javascript在计算机程序中,经常会声明无值的变量.未使用值来声明的变量,其值实际上是 undefined. 在执行过以下语句后,变量 carname 的值将 ...

  6. Requests中出现大量ASYNC_NETWORK_IO等待

    七夕活动,网页显示异常:504 Gateway Time-out The server didn't respond in time.开发询问数据库是否正常,当时正连接在实例上查询数据,感觉响应确实慢 ...

  7. 克隆虚拟机重启之后eth0不见的解决方案

    今天用虚拟机克隆多一个虚拟机的时候,发现克隆之后的新虚拟机的网卡eth0在配置之后完全是用不了的,下面说一下我的解决办法,亲测可用. 1.用ipconfig命令查看ip信息的时候会发现虚拟机没有找到e ...

  8. linux笔记_day10_shell编程

    1.shell编程 编程语言 静态语言:编译型语言 强类型(变量在使用前,必须事先声明) 事先转换成可执行语言 动态语言:解释型语言 弱类型(变量用时声明,拿来直接用,甚至不区分数据类型,一般默认都为 ...

  9. vs中如何统计整个项目的代码行数

    在一个大工程中有很多的源文件和头文件,如何快速统计总行数? ------解决方案--------------------b*[^:b#/]+.*$^b*[^:b#/]+.*$ ctrl + shift ...

  10. PYTHON-range和xrange区别

    range会根据输入,生成一个list. xrange功能类似,但生成的不是一个list,而是一个迭代器,每次调用是返回一个数字.这样比较节省内存.