HAOI2010 最长公共子序列
题目链接:戳我
30分暴力。。。。暴力提取子序列即可qwqwq
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
#define MAXN 5010
using namespace std;
int lena,lenb,n,ans,cnt;
int dp[MAXN][MAXN];
char a[MAXN],b[MAXN],cur[MAXN],pre[MAXN];
map<string,int>sum;
inline void init(int pos)
{
if(cnt==n)
{
string s;
for(int i=1;i<=cnt;i++) s+=pre[i];
sum[s]++;
return;
}
if(pos>=lenb) return;
for(int i=pos+1;i<=lenb;i++)
{
pre[++cnt]=b[i];
init(i);
cnt--;
}
}
inline void solve(int pos)
{
if(cnt==n)
{
string s;
for(int i=1;i<=cnt;i++) s+=cur[i];
ans+=sum[s];
return;
}
if(pos>=lena) return;
for(int i=pos+1;i<=lena;i++)
{
cur[++cnt]=a[i];
solve(i);
cnt--;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
freopen("ce.out","w",stdout);
#endif
scanf("%s%s",a+1,b+1);
lena=strlen(a+1)-1;
lenb=strlen(b+1)-1;
for(int i=1;i<=lena;i++)
{
for(int j=1;j<=lenb;j++)
{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
if(a[i]==b[j]) dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
}
}
n=dp[lena][lenb];
init(0);
cnt=0;
solve(0);
printf("%d\n%d\n",n,ans);
return 0;
}
考虑满分算法?题解的话强烈安利Flash_hu dalao的题解
第一问很好做,也就是f[i][j]表示第一个序列到第i位,第二个序列到第j位,最长的公共子序列的长度。f[i][j]可以从f[i-1][j]和f[i][j-1]转移过来,如果a[i]==b[j]的话还可以从f[i-1][j-1]+1转移过来。
对于第二问,我们设sum[i][j]表示第一个序列到第i位,第二个序列到第j位,最长公共子序列长度为f[i][j]的子序列个数。显然如果f[i-1][j]f[i][j]的话,我们是可以从sum[i-1][j]转移过来的,f[i][j-1]f[i][j]同理。额外的,如果f[i-1][j-1]+1==f[i][j]时,我们还可以累加sum[i-1][j-1]的答案。
就这样就结束了吗?不对,你会发现W掉了。为什么呢?
这是因为如果当f[i-1][j-1]==f[i][j]的时候,sum[i-1][j-1]的值对sum[i-1][j]和sum[i][j-1]各贡献了一次。而我们累加到sum[i][j]的时候相当于重算了一次,所以还要记得减去哦qwqwq
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 5010
#define mod 100000000
using namespace std;
int lena,lenb;
int f[2][MAXN],sum[2][MAXN];
char a[MAXN],b[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
freopen("ce.out","w",stdout);
#endif
scanf("%s%s",a+1,b+1);
lena=strlen(a+1)-1,lenb=strlen(b+1)-1;
for(int i=0;i<=lenb;i++) sum[0][i]=1;
sum[1][0]=1;
for(int i=1;i<=lena;i++)
{
for(int j=1;j<=lenb;j++)
{
sum[1][j]=0;
f[1][j]=max(f[1][j-1],f[0][j]);
if(a[i]==b[j]) f[1][j]=max(f[1][j],f[0][j-1]+1);
if(a[i]==b[j]&&f[0][j-1]+1==f[1][j]) sum[1][j]+=(sum[1][j]+sum[0][j-1])%mod;
if(f[1][j-1]==f[1][j]) sum[1][j]=(sum[1][j]+sum[1][j-1])%mod;
if(f[0][j]==f[1][j]) sum[1][j]=(sum[1][j]+sum[0][j])%mod;
if(a[i]!=b[j]&&f[0][j-1]==f[1][j]) sum[1][j]=(sum[1][j]+mod-sum[0][j-1])%mod;
}
swap(f[0],f[1]),swap(sum[0],sum[1]);
}
printf("%d\n%d\n",f[0][lenb],sum[0][lenb]);
return 0;
}
HAOI2010 最长公共子序列的更多相关文章
- [BZOJ2423][HAOI2010]最长公共子序列
[BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...
- 【BZOJ2423】[HAOI2010]最长公共子序列 DP
[BZOJ2423][HAOI2010]最长公共子序列 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)
2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...
- bzoj:2423: [HAOI2010]最长公共子序列
Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...
- [HAOI2010]最长公共子序列(LCS+dp计数)
字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X ...
- 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)
洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...
- LG2516 【[HAOI2010]最长公共子序列】
前言 感觉这几篇仅有的题解都没说清楚,并且有些还是错的,我再发一篇吧. 分析 首先lcs(最长公共子序列)肯定是板子.但这题要求我们不能光记lcs是怎么打的,因为没这部分分,并且另外一个方程的转移要用 ...
- bzoj 2423: [HAOI2010]最长公共子序列【dp+计数】
设f[i][j]为a序列前i个字符和b序列前j个字符的最长公共子序列,转移很好说就是f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+(a[i]==b[j])) ...
- 洛谷 P2516 [HAOI2010]最长公共子序列
题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由 ...
随机推荐
- 【转】c++虚函数实现原理
原文链接:https://blog.csdn.net/neiloid/article/details/6934135 C++中的虚函数的作用主要是实现了多态的机制.关于多态,简而言之就是用父类型别的指 ...
- Spring IOC的配置使用
1.1.1 XML配置的结构一般配置文件结构如下: <beans> <import resource=”resource1.xml” /> <bean id=”bean1 ...
- flask 常见关系模板代码
以下罗列了使用关系型数据库中常见关系定义模板代码 一对多示例场景:用户与其发布的帖子(用户表与帖子表)角色与所属于该角色的用户(角色表与多用户表)示例代码class Role(db.Model): & ...
- Python 爬虫之 Scrapy 分布式原理以及部署
Scrapy分布式原理 关于Scrapy工作流程 Scrapy单机架构 上图的架构其实就是一种单机架构,只在本机维护一个爬取队列,Scheduler进行调度,而要实现多态服务器共同爬取数据关键就是共享 ...
- 【bzoj2242】[SDOI2011]计算器
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 3207 Solved: 1258[Submit][Statu ...
- 多个div嵌套,获取鼠标所点击的div对象
我选择的是冒泡事件 $(function() { $("#主divID").on("click",function(e) {//主div是必须存在的 //冒泡事 ...
- ios7 适配
1.状态栏20px高度问题 ) { [application setStatusBarStyle:UIStatusBarStyleLightContent]; self.window.clipsToB ...
- jquery下的提交,点击按钮没反应,post方法不执行 JSON方式在FORM表单下不起作用
jquery下的提交,点击按钮没反应,post方法不执行 JSON方式在FORM表单下不起作用
- C#跨线程操作控件的最简单实现探究
随着程序复杂度的提高,程序不可避免会出现多个线程,此时就很可能存在跨线程操作控件的问题. 跨线程操作UI控件主要有三类方式: 1.禁止系统的线程间操作检查.(此法不建议使用) 2.使用Invoke(同 ...
- Nmap扫描参数解析
Nmap是一款开源免费的网络发现(Network Discovery)和安全审计(Security Auditing)工具.软件名字Nmap是Network Mapper的简称.Nmap最初是由Fyo ...