Tower Defense

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)

Total Submission(s): 474    Accepted Submission(s): 126
Problem Description
  DRD loves playing computer games, especially Tower Defense games. Tower Defense is a famous computer game with a number of variations. In general, you are to build some defense towers to guard your territory in this game.

  However, in most Tower Defense games, your defending towers will not attack each other. You will see the shells flying through your towers and finally hit the target on your screen. DRD thinks it to be absurd, and he designed a new tower defense game.

  In DRD’s game, you have two kinds of defending tower, heavy tower and light tower. You can put the tower on a grid with N rows and M columns and each cell in the grid can hold one tower at most. Both two kinds of towers can attack the cells in the same column
or the same row as it is located in, and your towers may attack each other. Moreover, light towers should not be attacked by other towers while heavy towers can be attacked by at most one other tower.

  You can put some of your towers (at least one tower) in the grid to build a tower formation satisfying the restriction above. And now, DRD wants you to calculate that how many different tower formations could be designed. Note that all the towers of the same
type are considered to be identical. While the answer could be quite large, you should output the number mod (109 + 7).
 
Input
  There are multiple test cases in the input. The first line of the input file is an integer T demonstrating the number of test cases. (0< T<= 200).

  For each test case, there is only one line containing 4 integers, N, M, P and Q ,meaning that the grid has N rows and M columns, and you have P heavy towers and Q light towers. You do not have to put all the towers in the grid. (1 <= N, M <= 200, 0 <= P,
Q <= 200)
 
Output
  For each test case, output the number of different formations mod (109 + 7) in a single line.
 
Sample Input
3
2 2 0 1
2 2 2 0
3 3 2 1
 
Sample Output
4
10
144
 
Source


思路来源于:点击打开链接

题意:
有两种塔,重塔,轻塔。

每种塔,能攻击他所在的一行和他所在的一列, 轻塔不 能被攻击。而重塔能够被至多一个塔攻击,也就是说重塔仅仅能被重塔攻击。

在一个n*m 的矩阵中,最少放一个塔,可放多个。

问。给定p个重塔,q个轻塔。问有多少种放法。


思路:
1、 一行中有两个重塔,

2、 一列中有两个重塔

3、 在该行及在该行塔所在的列仅仅有一个塔,重塔或者轻塔。

对以上三种情况挨个处理:

1、 设有i行有两个重塔,j列有两个重塔,则一共占 i+2*j 行, j+2*i列,共用2*(i+j)个重塔,,由于一行或一列两个塔

2、 对剩余的塔,进行枚举,0<-->剩余的塔。枚举这些塔中重塔的个数进行枚举


对于1: 在行中有两个重塔 c(n,i)*c(m,2*i)*((2*i)!/2^i)   意思 是在n行中选i行,在m列中选2*i列,  对于选出来的2*i列,分成i组。须要进行全排列,可是组内不须要进行全排列。所以为(2*i)!/2^i 在列中有两个重塔,c(m-2*i,j)*c(n-i,2*j)*((2*j)!/2^j)  原理同上



对于2:设有k个塔, 在剩余的n-(i+2*j) 行  m-(2*i+j) 列中 选 k个 点 (现有的行列组合*k!),k最大为  p-2*(i+j)+q,对于k个塔,则重塔最多有b =  min (k, p-2*(i+j) ) 个,  最少有a =  max(0,k-q) 个 。k个塔,最少 a 。最多b  则为重塔的取法有(c[k][0]+c[k][1]...+c[k][b])- (c[k][0]+c[k][1]+...+c[k][a-1]);

最后将不放的情况减掉就可以,也就是减1;

代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define maxn 405
#define MAXN 200005
#define INF 0x3f3f3f3f
#define mod 1000000007
#define eps 1e-6
const double pi=acos(-1.0);
typedef long long ll;
using namespace std; ll n,m,ans,cnt,p,q;
ll c[maxn][maxn],sum[maxn][maxn],fac[maxn],odd[maxn]; void presolve()
{
ll i,j;
for(i=0;i<=200;i++) c[i][0]=sum[i][0]=1;
for(i=1;i<=200;i++)
{
for(j=1;j<=i;j++)
{
c[i][j]=c[i-1][j]+c[i-1][j-1];
c[i][j]%=mod;
}
}
for(i=0;i<=200;i++)
{
for(j=1;j<=200;j++)
{
sum[i][j]=sum[i][j-1]+c[i][j];
sum[i][j]%=mod;
}
}
fac[0]=odd[1]=1;
for(i=1;i<=400;i++)
{
fac[i]=(fac[i-1]*i)%mod;
if(i>1&&(i&1)) odd[i]=(odd[i-2]*i)%mod;
}
}
void solve()
{
ll i,j,t,k;
ans=0;
for(i=0; i<=n; i++)
{
for(j=0; j<=m; j++)
{
if(i+2*j>n||(j+2*i)>m||2*(i+j)>p) break ;
if(2*i-1>0) t=odd[2*i-1];
else t=1;
ll res=(((((c[n][i]*c[m][2*i])%mod)*t)%mod)*fac[i])%mod;
if(2*j-1>0) t=odd[2*j-1];
else t=1;
res=((((res*c[m-2*i][j])%mod*c[n-i][2*j])%mod*t)%mod*fac[j])%mod; ll tp=p-2*(i+j),tq=q,tn=n-(i+2*j),tm=m-(j+2*i);
for(k=0;k<=tp+tq;k++)
{
if(k>tn||k>tm) break ;
ll minp=max(0LL,k-tq),maxp=min(k,tp);
if(minp==0) t=0;
else t=sum[k][minp-1];
ll tmp=((((c[tn][k]*c[tm][k])%mod*fac[k])%mod)*(sum[k][maxp]-t))%mod;
ans=(ans+tmp*res)%mod;
}
}
}
ans=(ans-1+mod)%mod;
printf("%lld\n",ans);
}
int main()
{
ll i,j,t;
presolve();
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld%lld%lld",&n,&m,&p,&q);
solve();
}
return 0;
}
/*
3
2 2 0 1
2 2 2 0
3 3 2 1
*/

 

hdu 4779 Tower Defense (思维+组合数学)的更多相关文章

  1. hdu 4779 Tower Defense 2013杭州现场赛

    /** 题意: 有两种塔,重塔,轻塔.每种塔,能攻击他所在的一行和他所在的一列, 轻塔不 能被攻击,而重塔可以被至多一个塔攻击,也就是说重塔只能被重塔攻击.在一个n*m 的矩阵中,最少放一个塔,可放多 ...

  2. HDU 4779:Tower Defense

    Tower Defense Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)T ...

  3. dp --- hdu 4939 : Stupid Tower Defense

    Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  4. hdu4939 Stupid Tower Defense (DP)

    2014多校7 第二水的题 4939 Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131 ...

  5. Stupid Tower Defense

    Problem Description FSF is addicted to a stupid tower defense game. The goal of tower defense games ...

  6. 初识Tower Defense Toolkit

    Tower Defense Toolkit 做塔防游戏的插件 主要层次如下图: 1GameControl _ _Game Control(Script) _ _ _Spawn Manager _ _ ...

  7. HDU4939Stupid Tower Defense (有思想的dp)

    Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Oth ...

  8. Tower Defense Game

    Tower Defense Game 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 There is a tower defense game with n level ...

  9. HDU 4939 Stupid Tower Defense(dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4939 解题报告:一条长度为n的线路,路上的每个单元格可以部署三种塔来给走在这条路上的敌人造成伤害,第一 ...

随机推荐

  1. linux防火墙查看、开启、关闭

    查看   vi /etc/sysconfig/iptables 开启   service iptables stop 关闭   service iptables restart

  2. Introducing ASP.NET Core: The New ASP.NET in Town!

    The new version of ASP.NET is called ASP.NET Core (a.k.a ASP.NET 5) and it has the most significant ...

  3. unix简史及应用

    Unix 简史 1965年时,贝尔实验室(Bell Labs)加入一项由奇异电子(General Electric)和麻省理工学院(MIT)合作的计画:该计画要建立一套多使用者.多任务.多层次(mul ...

  4. FAQ:如何修改领域模型?

    问答部分 问: 如何修改领域模型? 答: 一般来说我们有两种选择,这两种选择也是两种价值观的体现(乐观和悲观). 第一种:使用UI传递过来的DTO在应用层重建Domain Model,然后执行修改,D ...

  5. SharePoint 2013 App 示例之图片墙

    应用程序实质上是 Web 应用程序.如果您知道如何生成 Web 应用程序,则您就知道如何生成 SharePoint 相关应用程序.您可以使用任何语言,如 HTML.JavaScript.PHP 或 . ...

  6. MySQL round函数

    在mysql中,round函数用于数据的四舍五入,它有两种形式: 1.round(x,d)  ,x指要处理的数,d是指保留几位小数 这里有个值得注意的地方是,d可以是负数,这时是指定小数点左边的d位整 ...

  7. mongodb,redis,memcached,mysql对比

    1.性能都比较高,性能对我们来说应该都不是瓶颈总体来讲,TPS方面redis和memcache差不多,要大于mongodb 2.操作的便利性memcache数据结构单一redis丰富一些,数据操作方面 ...

  8. Informatica 常用组件Source Qualifier之三 联接查询

    联接源数据 可以使用一个源限定符转换来联接来自多个关系表的数据.这些表必须能从相同的实例或数据库服务器访问.当映射使用相关的关系源时,您可以在一个源限定符转换中同时联接两个源.在会话期间,源数据库在传 ...

  9. Linux下解决 id_rsa 权限不够

    问题 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @         WARNING: UNPROTECTED PRIVAT ...

  10. SQL CROSS JOIN

    最近在讲到T-SQL查询的Join部分时,一下子没有想起来CROSS JOIN的用法,因为其实平常也确实基本不用到.特意找了一个例子,以供参考 CROSS JOIN又称为笛卡尔乘积,实际上是把两个表乘 ...