IEEEXtreme 10.0 - Inti Sets
这是 meelo 原创的 IEEEXtreme极限编程大赛题解
Xtreme 10.0 - Inti Sets
题目来源 第10届IEEE极限编程大赛
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/inti-sets
In order to motivate his Peruvian students, a teacher includes words in the Quechua language in his math class.
Today, he defined a curious set for a given positive integer N. He called this set, an Inti set, and defined it as the set of all positive integer numbers that have the number 1 as their single common positive divisor with number N.
The math class about Inti sets was amazing. After class, the students try to challenge to teacher. They each ask questions like this: "Could you tell me the sum of all numbers, between A and B (inclusive), that are in the Inti set of N?"
Since the teacher is tired and he's sure that you are the best in class, he wants to know if you can help him.
Input Format
The first line of input contains an integer Q, 1 ≤ Q ≤ 20, representing the number of students. Each of the next Qlines contain three space-separated integers N, A and B, which represent a query.
Constraints
1 ≤ A ≤ B ≤ N ≤ 10^12
Output Format
The output is exactly Q lines, one per student query. For each query you need to find the sum of all numbers between A and B, that are in the Inti set of N, and print the sum modulo 1000000007.
Sample Input
2
12 5 10
5 1 4
Sample Output
12
10
Explanation
In the sample input, Q = 2, so you have to answer two questions:
In the first question N = 12, A = 5 and B = 10. So you have to find the sum of all numbers between 5 and 10, that are in the Inti set of 12.
Inti set ( 12 ) = { 1, 5, 7, 11, 13, ... }
2 and 4 are not in the Inti set (12) because 12 and these numbers are also divisible by 2.
3 and 9 are not in the Inti set (12) because 12 and these numbers are also divisible by 3.
The numbers in the Inti set, which are in the query's range, are 5 and 7, so answer is ( 5 + 7 ) MOD 1000000007 = 12
In the second question, the numbers in the Inti set of 5 between 1 and 4 are: 1, 2, 3, 4; so the answer is ( 1 + 2 + 3 + 4 ) MOD 1000000007 = 10
题目解析
显然直接求和会超时,可以用容斥原理解决。
用sumOver(5, 10, 1)表示区间[5,10]内为1倍数的数
由于12的质因数为2, 3
sum(区间[5, 10]内与12互质的数) = sumOver(5, 10, 1) - sumOver(5, 10, 2) - sumOver(5, 10, 3) + sumOver(5, 10, 6)
可以通过遍历区间[0,2^2)的每一个数来遍历所有因式的组合,
二进制数形式每一位代表是否存在该因数,1代表存在,0代表不存在,
因数的个数为偶数意味着和需要加上,为奇数意味着需要减去
00代表因数为1, 01代表因数为3, 10代表因数为2, 11代表因数为6
注意需要使用取余运算避免溢出。
复杂度分析
如果有c个质因数,那么需要求2^c个数的和
求每一个和需要常数时间O(1)
数N,至多只有一个大于sqrt(N)的质因数,因此质因数的个数不超过log(sqrt(N))+1
总复杂度为O(sqrt(N))
程序
C++
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std; #define MAXN 1000000007 // 区间[a,b]内,所有为x倍数数的和
long long sumOver(long long a, long long b, long long x) {
long long aa = (a + x - ) / x; // 上取整
long long bb = b / x; // 下取整 long long sum; // sum会超过long long的表示范围
if( (aa + bb) % == ) {
sum = (((aa + bb) / ) % MAXN) * ((bb - aa + ) % MAXN);
} else {
sum = ((aa + bb) % MAXN) * (((bb - aa + ) / ) % MAXN);
} return ((sum % MAXN) * (x % MAXN)) % MAXN;
} // 求不大于max的所有素数
// 使用筛选法
void getPrimes(vector<long long> &primes, long long max) {
vector<bool> nums(max, );
for(long long i=; i<max; i++) {
if(nums[i] == false) {
primes.push_back(i);
for(int n=*i; n<max; n+=i) {
nums[n] = true;
}
}
}
} // 对数x进行质因数分解
void getFactors(long long x, vector<long long> &factors, vector<long long> &primes) {
int i = ;
while(x > && i < primes.size()) {
if(x % primes[i] == ) {
factors.push_back(primes[i]);
while(x % primes[i] == ) x /= primes[i];
}
i++;
}
// 小于10^12的数最对有一个大于10^6的质因数
if(x > ) {
factors.push_back(x);
}
} int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
vector<long long> primes;
getPrimes(primes, ); int T;
cin >> T;
for(int t=; t<T; t++) {
long long x, a, b;
cin >> x >> a >> b;
long long result = ;
vector<long long> factors;
getFactors(x, factors, primes); int factorCount = factors.size();
long long binMax = (long long) << factorCount; // 遍历所有的质因数组合
for(long long bin=; bin<binMax; bin++) {
long long factor = ;
int factorC = ;
for(int i=; i<factorCount; i++) {
if( (bin >> i) & ) {
factor *= factors[i];
factorC ++;
}
} if(factorC % == ) {
result = (result + sumOver(a, b, factor) + MAXN) % MAXN;
}
else {
result = (result - sumOver(a, b, factor) + MAXN) % MAXN;
}
} cout << result << endl;
} return ;
}
IEEEXtreme 10.0 - Inti Sets的更多相关文章
- IEEEXtreme 10.0 - Painter's Dilemma
这是 meelo 原创的 IEEEXtreme极限编程比赛题解 Xtreme 10.0 - Painter's Dilemma 题目来源 第10届IEEE极限编程大赛 https://www.hack ...
- IEEEXtreme 10.0 - Ellipse Art
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Ellipse Art 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank ...
- IEEEXtreme 10.0 - Counting Molecules
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Counting Molecules 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Checkers Challenge
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Checkers Challenge 题目来源 第10届IEEE极限编程大赛 https://www.hac ...
- IEEEXtreme 10.0 - Game of Stones
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Game of Stones 题目来源 第10届IEEE极限编程大赛 https://www.hackerr ...
- IEEEXtreme 10.0 - Playing 20 Questions with an Unreliable Friend
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Playing 20 Questions with an Unreliable Friend 题目来源 第1 ...
- IEEEXtreme 10.0 - Full Adder
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...
- IEEEXtreme 10.0 - N-Palindromes
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - N-Palindromes 题目来源 第10届IEEE极限编程大赛 https://www.hackerra ...
- IEEEXtreme 10.0 - Mysterious Maze
这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Mysterious Maze 题目来源 第10届IEEE极限编程大赛 https://www.hacker ...
随机推荐
- thinkphp常见问题
1.数据库查询中execute和query方法的区别 tp中execute()和query()方法都可以在参数里直接输入sql语句. 但是不同的是execute()通常用来执行insert或者upda ...
- 基于OpenResty和Node.js的微服务架构实践
什么是微服务? 传统的单体服务架构是单独服务包,共享代码与数据,开发成本较高,可维护性.伸缩性较差,技术转型.跨语言配合相对困难.而微服务架构强调一个服务负责一项业务,服务可以单独部署,独立进行技术选 ...
- linux内核支持nfs挂载配置
1.配置网络部分,主要是使能CONFIG_IP_PNP以在2中能够看到Root file system on NFS选项Networking support Networking options TC ...
- ubuntu系统安装与卸载软件常用命令
一.unbuntu下的软件安装方式 1.deb包的安装方式 deb是debian系Linux的包管理方式,ubuntu是属于debian系的Linux发行版,所以默认支持这种软件安装方式,当下载到一个 ...
- 随机切分csv训练集和测试集
使用numpy切分训练集和测试集 觉得有用的话,欢迎一起讨论相互学习~Follow Me 序言 在机器学习的任务中,时常需要将一个完整的数据集切分为训练集和测试集.此处我们使用numpy完成这个任务. ...
- Ubuntu+NDK编译openssl
为了Android上使用libcurl且支持HTTPS协议,需要依赖openssl,因此先来了解一下如何编译OpenSSL1.编译ARM下的共享库(默认的)我使用的是guardianproject的o ...
- OpenCV---ROI(region of interest)和泛洪填充
一:ROI 感兴趣区(Region of Interest,ROIs) 是图像的一部分,它通过在图像上选择或使用诸如设定阈值(thresholding) 或者从其他文件(如矢量> 转换获得等方法 ...
- python 文字转语音包pyttsx安装出错解决方法
pyttsx的python的文字转语音的包,但是pyttsx的官方网站上资源只更新2012年,所以在py3中使用pip install pyttsx或者下载安装包进行安装时,虽然可以安装成功,但是im ...
- ⑤ 设计模式的艺术-05.原型(Prototype)模式
场景 思考一下:克隆技术是怎么样的过程? 克隆羊多利大家还记得吗? javascript语言中的,继承怎么实现?那里面也有prototype,大家还记得吗? 原型模式 通过new产生一个对象需要非常繁 ...
- 巧妙利用JQuery和Servlet来实现跨域请求
在网上看到很多的JQuery跨域请求的文章,比较有意思.这里我发表一个Servlet与JQuery配置实现跨域的代码,供大家参考.不足之处请指教 原理:JavaScript的Ajax不可以跨域,但是可 ...