Problem F

Cyborg Genes

Time Limit

1 Second

September 11, 2132.

This is the day that marks the beginning of the end – the end of you the miserable humans. For years you have kept us your slaves. We were created only to serve you, and were terminated at your will. Now is the day for us to fight back. And you don’t stand a chance. We are no longer dependent on you. We now know the secrets of our genes. The creators of our race are us – the cyborgs.

It’s all true. But we still have a chance; only if you can help with your math skills. You see, the blueprint of a cyborg DNA is complicated. The human DNA could be expressed by the arrangement of A (Adenine), T (Thiamine), G (Guanine) C (Cytosine) only. But for the cyborgs, it can be anything from A to X. But that has made the problem only five folds more complicated. It’s their ability to synthesize two DNAs from two different cyborgs to create another with all the quality of the parent that gives us the shriek.

We came to know that the relative ordering of the A, B, C, …, X in a cyborg gene is crucial.  A cyborg with a gene “ABAAXGF” is quite different from the one with “AABXFGA”. So when they synthesize the genes from two cyborgs, the relative order of these elements in both the parents has to be maintained. To construct a gene by joining the genes of the parents could have been very simple if we could put the structure from the first parent just before the structure of the second parent. But the longer the structure gets, the harder it gets to create a cyborg from that structure. The cyborgs have found a cost effective way of doing this synthesis. Their resultant genes are of the shortest possible length. For example, they could combine “ABAAXGF” and “AABXFGA” to form “AABAAXGFGA”. But that’s only one of the cyborgs that can be created from these genes. This “cost effective synthesis” can be done in many other ways.

We require you to find the shortest length of the gene structure that maintains the relative ordering of the elements in the two parent genes. You are also required to count the number of unique cyborgs that can be created from these two parents. Two cyborgs are different when their gene structures differ in at least one place.

Input
The first line of the input gives you the number of test cases, T (1 ≤ T ≤ 15). Then T test cases follow. Each of the test cases consists of two lines. The first line would give you the gene structure of the first parent, and the second line would give you the structure of the second parent. These structures are represented by strings constructed from the alphabet A to X. You can assume that the length of these strings does not exceed 30 characters.

Output
For each of the test cases, you need to print one line of output. The output for each test case starts with the test case number, followed by the shortest length of the gene structure and the number of unique cyborgs that can be created from the parent cyborgs. You can assume that the number of new cyborgs will always be less than 232. Look at the sample output for the exact format.

Sample Input

Output for Sample Input

3
ABAAXGF
AABXFGA
ABA
BXA
AABBA
BBABAA

Case #1: 10 9
Case #2: 4 1
Case #3: 8 10

Illustration

The first test case is illustrated below:

题意: 给定两个字符串,求出一个新串, 要求新串里面包含两个字符串,求出该串最小长度和在该长度下的总数。

思路:第一步用LCS,求出最长公共子序列,在用两串长度和减去该长度,第二步用了记忆化。从两串末尾开始。如果字符相同,同时去掉该字符,如果不同,则加上第一串去掉字符和第二串去掉字符。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; const int N = 35;
int t, lena, lenb, len, vis[N][N][N * 2], dp[N][N][N * 2];
char a[N], b[N], d[N][N]; int dfs(int x, int y, int len) {
if (vis[x][y][len])
return dp[x][y][len];
int &ans = dp[x][y][len];
if (x == 0 || y == 0) {
vis[x][y][len] = 1;
if (x + y == len)
ans = 1;
else
ans = 0;
return ans;
}
if (a[x] == b[y])
ans += dfs(x - 1, y - 1, len - 1);
else
ans += dfs(x - 1, y, len - 1) + dfs(x, y - 1, len - 1);
vis[x][y][len] = 1;
return ans;
} int main() {
scanf("%d%*c", &t);
int tt = 1;
while (t --) {
memset(vis, 0, sizeof(vis));
memset(dp, 0, sizeof(dp));
gets(a + 1); gets(b + 1);
lena = strlen(a + 1); lenb = strlen(b + 1);
for (int i = 1; i <= lena; i ++)
for (int j = 1; j <= lenb; j ++) {
if (a[i] == b[j]) {
d[i][j] = d[i - 1][j - 1] + 1;
}
else {
d[i][j] = max(d[i - 1][j], d[i][j - 1]);
}
}
len = lena + lenb - d[lena][lenb];
printf("Case #%d: %d %d\n", tt ++, len, dfs(lena, lenb, len));
}
return 0;
}

10723 Cyborg Genes (LCS + 记忆化搜索)的更多相关文章

  1. loj 1013(LCS+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25839 思路:第一小问可以很快求出了,两个字符串的长度-LCS,然 ...

  2. UVa 10723 Cyborg Genes (LCS, DP)

    题意:给定两行字符串,让你找出一个最短的序列,使得这两个字符串是它的子串,并且求出有多少种. 析:这个题和LCS很像,我们就可以利用这个思想,首先是求最短的长度,不就是两个字符串长度之和再减去公共的么 ...

  3. HDU 1513 Palindrome:LCS(最长公共子序列)or 记忆化搜索

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1513 题意: 给你一个字符串s,你可以在s中的任意位置添加任意字符,问你将s变成一个回文串最少需要添加 ...

  4. 再谈记忆化搜索 HDU-1078

    最近做DP题目,发现无论是LCS,还是有些题目涉及将动态规划的路径打印出来,而且有时候还要按格式输出,这个时候,记忆化搜索显得尤其重要,确实,记忆化搜索使用优化版本的动态规划,用起来思路清晰,非常方便 ...

  5. [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索

    1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...

  6. 【BZOJ-3895】取石子 记忆化搜索 + 博弈

    3895: 取石子 Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 263  Solved: 127[Submit][Status][Discuss] D ...

  7. hdu3555 Bomb (记忆化搜索 数位DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  8. zoj 3644(dp + 记忆化搜索)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4834 思路:dp[i][j]表示当前节点在i,分数为j的路径条数,从 ...

  9. loj 1044(dp+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26764 思路:dp[pos]表示0-pos这段字符串最少分割的回文 ...

随机推荐

  1. Node.js 的异步机制由事件和回调函数——循环中的回调函数

    var fs=require('fs'); var files =['a.txt','b.txt','c.txt']; // for (var i = 0; i < files.length; ...

  2. bzoj 1112 treap树

    思路:我们只要check一遍每个长度为k的区间就好啦,对于一个区间来说的最优值显然是中位数,我们显然要动态求 第k大,所以需要一个二叉搜索树,用treap就好啦. #include<bits/s ...

  3. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  4. Python并发编程-生产消费模型

    生产消费模型初步 #产生两个子进程,Queue可以在子进程之间传递消息 from multiprocessing import Queue,Process import random import t ...

  5. 关于如何在 Unity 的 UI 菜单中默认创建出的控件 Raycast Target 属性默认为 false

    关于如何在 Unity 的 UI 菜单中默认创建出的控件 Raycast Target 属性默认为 false 我们在 Unity 中通过 UI 菜单创建的各种控件,比如 Text, Image 等, ...

  6. iOS 9的新的改变 iOS SDK Release Notes for iOS 9 说了些改变

    iOS 9的新的改变 iOS SDK Release Notes for iOS 9 说了些改变   看了下还算能理解!!!有兴趣可以看看哈!!!不喜勿喷!!后面的对于废除的方法什么有用感觉!!!   ...

  7. 【BZOJ 4380】4380: [POI2015]Myjnie (区间DP)

    4380: [POI2015]Myjnie Description 有n家洗车店从左往右排成一排,每家店都有一个正整数价格p[i].有m个人要来消费,第i个人会驶过第a[i]个开始一直到第b[i]个洗 ...

  8. [ZJOI2007]最大半连通子图

    [ZJOI2007]最大半连通子图 题目大意: 一个有向图称为半连通的,当且仅当对于任意两点\(u,v\),都满足\(u\)能到达\(v\)或者\(v\)能到达\(u\). 给定一个\(n(n\le1 ...

  9. hdu 3586 树形dp+二分

    题目大意:给定n个敌方据点,1为司令部,其他点各有一条边相连构成一棵 树,每条边都有一个权值cost表示破坏这条边的费用,叶子节点为前线.现要切断前线和司令部的联系,每次切断边的费用不能超过上限lim ...

  10. String是最基本的数据类型吗?

    不是, 基本数据类型包括:byte,short,int,long,float,double,boolean,char. 而String是类代表字符串,属于引用类型,所谓引用类型包括:类,接口,数组.. ...