http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1190

\[\begin{aligned}
&\sum_{i=a}^b\frac{ib}{(i,b)}\\
=&b\sum_{i=a}^b\frac i{(i,b)}\\
=&b\sum_{d|b}\sum_{i=a}^b[d|i]\left[\left(\frac id,\frac bd\right)=1\right]\frac id\\
=&b\sum_{d|b}\sum_{i=\left\lceil\frac ad\right\rceil}^{\frac bd}\left[\left(i,\frac bd\right)=1\right]i\\
=&b\sum_{d|b}\sum_{i=\left\lceil\frac ad\right\rceil}^{\frac bd}i\sum_{d'|i,d'|\frac bd}\mu(d')\\
=&b\sum_{d|b}\sum_{d'|\frac bd}\mu(d')\sum_{i=\left\lceil\frac {a}{dd'}\right\rceil}^{\frac{b}{dd'}}id'\\
=&b\sum_{T|b}\sum_{d|T}\mu(d)\sum_{i=\left\lceil\frac aT\right\rceil}^{\frac bT}id\\
=&b\sum_{T|b}\frac{\left(\left\lceil\frac aT\right\rceil+\frac bT\right)\left(\frac bT-\left\lceil\frac aT\right\rceil+1\right)}{2}\sum_{d|T}\mu(d)d
\end{aligned}
\]

\(\sum\limits_{d|T}\mu(d)d=\prod\left(1-p_i\right)\),只要确定T的质因子就可以确定\(\sum\limits_{d|T}\mu(d)d\)的值。

如果循环枚举T找b的约数,无法快速计算T的质因子。

可以dfs枚举b的约数T,动态计算\(\sum\limits_{d|T}\mu(d)d\)的值。

时间复杂度\(O\left(T\sqrt n\right)\)。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll; const int N = 100000;
const int p = 1000000007;
const int ni2 = 500000004; bool notp[N];
int a, b, tot, P[N], c[N], num = 0, prime[N]; void Euler_shai() {
for (int i = 2; i <= N; ++i) {
if (!notp[i]) prime[++num] = i;
for (int j = 1; j <= num && prime[j] * i <= N; ++j) {
notp[prime[j] * i] = true;
if (i % prime[j] == 0) break;
}
}
} void pre(int x) {
tot = 0;
for (int i = 1, pi = 2; i <= num && pi * pi <= x; pi = prime[++i])
if (x % pi == 0) {
P[++tot] = pi; c[tot] = 0;
while (x % pi == 0) x /= pi, ++c[tot];
}
if (x > 1)
P[++tot] = x, c[tot] = 1;
} int ans; void dfs(int tmp, int T, int f) {
if (tmp > tot) {
int l = a / T, r = b / T;
if (a % T) ++l;
(ans += 1ll * (l + r) * (r - l + 1) % p * ni2 % p * f % p) %= p;
return;
}
dfs(tmp + 1, T, f);
int tt = T, ff = 1ll * f * (1 - P[tmp] + p) % p;
for (int i = 1; i <= c[tmp]; ++i) {
tt *= P[tmp];
dfs(tmp + 1, tt, ff);
}
} int main() {
Euler_shai(); int T; scanf("%d", &T);
while (T--) {
scanf("%d%d", &a, &b);
pre(b);
ans = 0;
dfs(1, 1, 1);
printf("%lld\n", 1ll * b * ans % p);
} return 0;
}

【51Nod 1190】最小公倍数之和 V2的更多相关文章

  1. 51nod 1190 最小公倍数之和 V2

    给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b). 例如:a = 1, b = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30 ...

  2. 51nod 1190 最小公倍数之和 V2【莫比乌斯反演】

    参考:http://blog.csdn.net/u014610830/article/details/49493279 这道题做起来感觉非常奇怪啊--头一次见把mu推出来再推没了的-- \[ \sum ...

  3. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  4. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  5. 51nod 1363 最小公倍数之和 ——欧拉函数

    给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66. 由于结果很大,输出Mod 1000 ...

  6. 51nod - 1363 - 最小公倍数之和 - 数论

    https://www.51nod.com/Challenge/Problem.html#!#problemId=1363 求\(\sum\limits_{i=1}^{n}lcm(i,n)\) 先换成 ...

  7. [51nod1190]最小公倍数之和V2(莫比乌斯反演)

    题解 传送门 题解 我是真的不明白这玩意儿是怎么跟反演扯上关系的-- 首先 \[ \begin{align} ans &=b\sum_{d|b}{1\over d}\sum_{i=a}^{b} ...

  8. 51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】

    首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...

  9. [51Nod 1238] 最小公倍数之和 (恶心杜教筛)

    题目描述 求∑i=1N∑j=1Nlcm(i,j)\sum_{i=1}^N\sum_{j=1}^Nlcm(i,j)i=1∑N​j=1∑N​lcm(i,j) 2<=N<=10102<=N ...

随机推荐

  1. DevExpress使用教程:GridView经验小结(官方中文文献经典资料技巧)

    下面是笔者自己总结的使用 DevExpress Gridview 的一些经验小结,分享给大家: 1.去除 GridView 头上的 "Drag a column header here to ...

  2. 51nod 1140 矩阵相乘结果的判断

    给出三个N*N的矩阵A, B, C,问A * B是否等于C?   Input 第1行,1个数N.(0 <= N <= 500) 第2 - N + 1行:每行N个数,对应矩阵A的元素.(0  ...

  3. ADO.NET中带参数的Sql语句的陷阱

    1.使用Parameter //利用构造函数方式 ,不推荐这样写 Parameter p =new Parameter("@id",值); cmd.Parameters.Add(p ...

  4. 23、Xpath

    1.什么是Xpath?1.XPath即为XMLPath的简称,它是一种用来确定XML文档中某部分位置的语言.2.HTML可以看做是XML的一种实现,所以selenium用户可以使用这种强大的语言在we ...

  5. okhttp3使用详解

    http://blog.csdn.net/itachi85/article/details/51190687

  6. Double类型的数向上取整和向下取整

  7. uboot之---make smdk2410_config命令详细解析

    先进入顶层Makefile.有很多相对不同板子的配置,如: gec2440_config:unconfig @$(MKCONFIG) $(@:_config=) arm arm920t gec2440 ...

  8. 关于parse_str变量覆盖分析

    这个漏洞有两个姿势.一个是不存在的时候一个是存在的时候. 经过测试该漏洞只在php5.2中存在,其余均不存在. 倘若在parse_str函数使用的代码上方未将其定义那么即存在变量覆盖漏洞否则不行. 还 ...

  9. Linux Kernel代码艺术——数组初始化【转】

    转自:http://www.cnblogs.com/hazir/p/array_initialization.html 前几天看内核中系统调用代码,在系统调用向量表初始化中,有下面这段代码写的让我有点 ...

  10. SSL证书生成方法【转】

    转自 SSL证书生成方法 - fyang的专栏 - 博客频道 - CSDN.NEThttp://blog.csdn.net/fyang2007/article/details/6180361 一般情况 ...