HDU 2894 DeBruijin (数位欧拉)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2894
题目大意:旋转鼓的表面分成m块扇形,如图所示(m=8)。图中阴影区表示用导电材料制成,空白区用绝缘材料制成,终端a、b和c是3(k=3)处接地或不是接地分别用二进制信号0或1表示。因此,鼓的位置可用二进制信号表示。试问应如何选取这8个扇形的材料使每转过一个扇形都得到一个不同的二进制信号,即每转一周,能得到000到111的8个数。
那我们现在把旋转鼓的表面分成m块扇形,每一份记为0或1,使得任何相继的k个数的有序组(按同一方向)都不同,对固定的k,m最大可达到多少,并任意输出符合条件的一个这样的有序组。
第一问m达到的最大值为2^k。
第二问就是模拟一下旋转鼓接地线的旋转过程,每次旋转即删去第一个数,然后在最后加一个0(a<<1&((1<<k)-1))或1(a<<1&((1<<k)-1)+1),同时标记出现过的数字,保证每个出现的数字都不同。
因为所有数为0到2^k-1,对于任意给定的点a,将它与点a1=a<<1&((1<<k)-1)与点a2=a1+1分别连一条边,构成欧拉回路(每个点入度=出度=2),加一个vis数组确定每个数出现一次。因为结果需要按照字典序从小到大排,所以首先输出的必然是k个前导0,然后dfs判断0或1时先判0,再判1,逆序输出即可(dfs回溯)。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define CLR(arr,val) memset(arr,val,sizeof(arr))
using namespace std;
const int N=; int k,cnt;
int ans[<<N];
bool vis[<<N]; void init(){
CLR(vis,false);
CLR(ans,);
cnt=;
} void euler(int st) {
int s1=(st<<)&((<<k)-);
int s2=s1+;
if (!vis[s1]){
vis[s1]=;
euler(s1);
ans[++cnt]=;
}
if (!vis[s2]) {
vis[s2]=;
euler(s2);
ans[++cnt]=;
}
} int main(){
while(~scanf("%d",&k)){
init();
euler();
printf("%d ",cnt);
//因为要求字典序最小,所以前k位都是0(前导零)
for(int i=;i<k;i++){
printf("");
}
for(int i=cnt;i>=k;i--){
printf("%d",ans[i]);
}
printf("\n");
}
return ;
}
HDU 2894 DeBruijin (数位欧拉)的更多相关文章
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 5430 Reflect(欧拉函数)
题目: http://acm.hdu.edu.cn/showproblem.php?pid=5430 从镜面材质的圆上一点发出一道光线反射NNN次后首次回到起点. 问本质不同的发射的方案数. 输入描述 ...
- hdu 5279 Reflect phi 欧拉函数
Reflect Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest_chi ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- hdu GuGuFishtion 6390 数论 欧拉函数
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6390 直接开始证明: 我们设…………………………………….....…...............………… ...
- HDU 1787 GCD Again(欧拉函数,水题)
GCD Again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- hdu 3501 Calculation 2 (欧拉函数)
题目 题意:求小于n并且 和n不互质的数的总和. 思路:求小于n并且与n互质的数的和为:n*phi[n]/2 . 若a和n互质,n-a必定也和n互质(a<n).也就是说num必定为偶数.其中互质 ...
- hdu 1695 GCD(欧拉函数+容斥)
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...
- hdu 2814 快速求欧拉函数
/** 大意: 求[a,b] 之间 phi(a) + phi(a+1)...+ phi(b): 思路: 快速求欧拉函数 **/ #include <iostream> #include & ...
随机推荐
- Spring Boot系列教程一:Eclipse安装spring-tool-suite插件
一.前言 一直使用eclipse,个人习惯选用Eclipse+spring-tool-suite进行开发,特别注意Eclipse要选用对应的spring-tool-suite进行安装,这 ...
- 【BZOJ3162】独钓寒江雪(树哈希,动态规划)
[BZOJ3162]独钓寒江雪(树哈希,动态规划) 题面 BZOJ 题解 忽然翻到这道题目,突然发现就是前几天一道考试题目... 题解: 树哈希,既然只考虑这一棵树,那么,如果两个点为根是同构的, 他 ...
- 【BZOJ4443】小凸玩矩阵(二分答案,二分图匹配)
[BZOJ4443]小凸玩矩阵(二分答案,二分图匹配) 题面 BZOJ Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两 ...
- Linux内核分析7
一.理论知识 Linux中,可以从c源代码生产一个可执行程序,这其中要经过预处理.编译和链接的过程.可以参考以下图来理解这个过程: 其中,目标文件中至少有编译后的机器指令代码.数据,也还包括了链接时所 ...
- 【learning】加权拟阵与贪心
首先.. 这篇东西的话算是一个关于拟阵部分知识的小总结,有些语言相对来说偏向便于理解方面,所以可能..有一些说法会不是那么严谨大概是这样 一些概念 线性无关:一组数据中没有一个量可以写成其余量的线 ...
- [io benchmark]常用磁盘基准/压力测试工具
Unix Disk I/O Benchmarks fio - NEW! fio is an I/O tool meant to be used both for benchmark and stres ...
- mac和linux下sed使用的不同
http://note.youdao.com/noteshare?id=84a6a0eb3e3f1698c9de4f48db24226e
- 「Python」python绘制图表
介绍一种简单而又功能强大的绘制图形或报表的包—pyecharts,一个基于Echarts(基于JS的数据可视化库)的图标类库,除了绘制常见的折线图.柱状图.饼图.箱型图和散点图外,还可以绘制3D柱状图 ...
- dalao&话
最大权闭合子图 正负点权之间连边,容量为无穷大,代表正负之间有联系,跑最小割,要么舍弃正的要么舍弃负的,就是把图割开
- oracle实用的sqlplus命令
有时候难免没有工具,得自己手动输入sqlplus命令 执行SQL文件:@sql文件,例如:@/home/myuser/sql/test.sql查看数据库存在的存储过程:Select object_na ...