P3048 [USACO12FEB]牛的IDCow IDs

    • 12通过
    • 67提交
  • 题目提供者lin_toto
  • 标签USACO2012
  • 难度普及/提高-
  • 时空限制1s / 128MB

提交  讨论  题解

最新讨论更多讨论

  • 谁能解释一下这个样例啊....

题目描述

Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, he is a bit superstitious, and only labels cows with binary numbers that have exactly K "1" bits (1 <= K <= 10). The leading bit of each label is always a "1" bit, of course. FJ assigns labels in increasing numeric order, starting from the smallest possible valid label -- a K-bit number consisting of all "1" bits. Unfortunately, he loses track of his labeling and needs your help: please determine the Nth label he should assign (1 <= N <= 10^7).

FJ给他的奶牛用二进制进行编号,每个编号恰好包含K 个"1" (1 <= K <= 10),且必须是1开头。FJ按升序编号,第一个编号是由K个"1"组成。

请问第N(1 <= N <= 10^7)个编号是什么。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers, N and K.

输出格式:

输入输出样例

输入样例#1:

7 3
输出样例#1:

10110 
分析:首先有一个很简单的结论:一个只有0和1的数字串,只有1对数字串大小有影响,0没有影响。很简单证明,大小取决于1的位置和数量。
这道题有一个限制:第一位必须是0,那么我们先将这个串用足够大小保存,足够大的话我们可以添加前导0,到最后从第一个非0位输出即可,也就是说我们要找到一个m,使得C(m,k) >= n,这个可以用二分实现,我们先弄一个m位的全是0的串。然后考虑C(i-1,k)的意义,即还剩i-1位可以填k个1的方案数,也就是说我们还有C(i,k)个不同大小的数,如果C(i-1,k) < n,则说明剩下的数还不够n个,我们不能找到第n大的数,于是我们在i位填1,那么这个数就是能够出现的C(i-1,k)个数中最大的,n-=C(i-1,k),k--,如果C(i-1,k) >= n,说明后面还能找到第n大的,我们填0即可,就这样模拟一下就好了。
不过这个组合数会非常大,还会爆long long,需要分类讨论进行二分.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; long long n, k, f[][], m;
long long num[], cnt; long long Combination(long long n, long long m)
{
long long ans = ;
for (long long i = n; i >= (n - m + ); --i)
ans *= i;
while (m)
ans /= m--;
return ans;
} int main()
{
scanf("%lld%lld", &n, &k);
if (k == )
{
for (int i = n; i; i--)
{
if (i == n)
printf("");
else
printf("");
}
return ;
}
else
{
if (k == )
{
long long l = , r = ;
while (l <= r)
{
long long mid = (l + r) >> ;
if (Combination(mid, k) >= n)
{
m = mid;
r = mid - ;
}
else
l = mid + ;
}
}
else
{
if (k >= )
{
long long l = , r = ;
while (l <= r)
{
long long mid = (l + r) >> ;
if (Combination(mid, k) >= n)
{
m = mid;
r = mid - ;
}
else
l = mid + ;
}
}
else
{
long long l = , r = ;
while (l <= r)
{
long long mid = (l + r) >> ;
if (Combination(mid, k) >= n)
{
m = mid;
r = mid - ;
}
else
l = mid + ;
}
}
}
for (long long i = m; i; i--)
{
long long t = Combination(i - , k);
if (t < n)
{
num[i] = ;
n -= t;
k--;
if (!cnt)
cnt = i;
}
if (!k || !n)
break;
}
for (long long i = cnt; i; i--)
printf("%d", num[i]);
} return ;
}
 

洛谷P3048 [USACO12FEB]牛的IDCow IDs的更多相关文章

  1. 洛谷 P3048 [USACO12FEB]牛的IDCow IDs

    题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...

  2. LUOGU P3048 [USACO12FEB]牛的IDCow IDs(组合数)

    传送门 解题思路 组合数学.首先肯定是要先枚举位数,假如枚举到第\(i\)位.我们可以把第一位固定,然后那么后面的随意放\(1\),个数就为\(C_{i-1}^{k-1}\).然后每次枚举时如果方案\ ...

  3. 洛谷P3045 [USACO12FEB]牛券Cow Coupons

    P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...

  4. [USACO12FEB]牛的IDCow IDs

    题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...

  5. [USACO12FEB]牛的IDCow IDs 一题多解(求二进制中有k个1 ,第n大的数)

    题目: FJ给他的奶牛用二进制进行编号,每个编号恰好包含K 个"1" (1 <= K <= 10),且必须是1开头.FJ按升序编号,第一个编号是由K个"1&q ...

  6. 洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game

    洛谷 2953 [USACO09OPEN]牛的数字游戏Cow Digit Game 题目描述 Bessie is playing a number game against Farmer John, ...

  7. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  8. 洛谷 3029 [USACO11NOV]牛的阵容Cow Lineup

    https://www.luogu.org/problem/show?pid=3029 题目描述 Farmer John has hired a professional photographer t ...

  9. 洛谷P3047 [USACO12FEB]Nearby Cows(树形dp)

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

随机推荐

  1. Atom 插件 Sync Settings 备份与恢复

    当使用 Atom IDEA.随着使用的越来越多,安装的插件也越来越多,一旦电脑重装后需要复原开发环境,这将是一件比较头疼的事.「Sync Settings」插件可以帮助我们解决这个问题. 操作流程 安 ...

  2. day09,10 函数

    一.函数 什么是函数 函数: 对代码块和功能的封装和定义 定义一个事情或者功能. 等到需要的时候直接去用就好了. 那么这里定义的东西就是一个函数. 语法: def 函数名(形参): 函数体 函数名(实 ...

  3. hbase 修复 hbck

    hbase 修复使用hbck 新版本的 hbck 可以修复各种错误,修复选项是: (1)-fix,向下兼容用,被-fixAssignments替代 (2)-fixAssignments,用于修复reg ...

  4. loadrunner socket协议问题归纳(1)

    前段时间测了loadrunner直接发送报文到socket上的性能测试.在此,稍微回顾整理下. 与socket通讯,有两种方式,一种是建立长连接,建立后,不停的发送,接收.另外一种是建立短连接,建立连 ...

  5. 调试和开发npm模块的方式

    ln -s(软连接) 假设my-project是运行npm模块的项目,vue-router是我们需要调试的npm模块 将vue-router下载到与my-project同级目录中. git clone ...

  6. UVALive 6913 I Want That Cake 博弈+dp

    题目链接: http://acm.hust.edu.cn/vjudge/problem/96343 I Want That Cake Time Limit: 3000MS 64bit IO Forma ...

  7. Markdown的基本语法

    Markdown 是一种轻量级的「标记语言」,它的优点很多,目前也被越来越多的写作爱好者,撰稿者广泛使用.看到这里请不要被「标记」.「语言」所迷惑,Markdown 的语法十分简单.常用的标记符号也不 ...

  8. 移植spdylay到libcurl

    Libcurl是第三方网络库,支持各种网络协议 SPDY是Google提出的用来替代HTTP1.1的网络协议, 目前google.com, facebook.com, twitter.com服务器端都 ...

  9. 小工具xml生成记录

    public partial class Form1 : Form    {        public Form1()        {            InitializeComponent ...

  10. hibernate.cfg.xml案例

    一.概念. hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,使得Java程序员可以随心所欲的使用对象编程思维来操纵数据库.既然学习Hibernate那么第 ...