https://vjudge.net/problem/UVA-1575

题意:

令f(k)=n 表示 有n种方式,可以把正整数k表示成几个数的乘积的形式。

例 10=2*5=5*2,所以f(10)=2

给出n,求最小的k

搜索

从最小的质数开始枚举选几个

假设前i-1个种质数用了k个,有sum种方案,第i种质数选a个,

那么前i种质数的方案就有sum*C[k+a][a]

可以理解原来有k个位置,又加了a个位置,有a个数可以放在任意位置

所以前i种的每一种方案都变成C[k+a][a]种

枚举每个质数选几个时,如果上一个质数选了k个,那么这一个质数最多选k个

假设这个质数选了k+1个,那么显然上一个质数选k+1个,这个选k个更优

注意整数类型上限

#include<cstdio>
#include<iostream>
using namespace std;
typedef unsigned long long LL;
int p[]={,,,,,,,,,,,,,,,,,,,,};
LL ans,n;
LL C[][];
void solve(int num,int lim,LL tot,LL now,int last)
{
if(now>ans) return;
if(tot==n) { ans=now; return ; }
if(tot>n || num>) return;
LL t=;
for(int i=;i<=lim;i++)
{
t*=p[num];
if(now>=ans/t) return;
solve(num+,i,tot*C[last+i][i],now*t,last+i);
}
}
int main()
{
C[][]=;
for(int i=;i<;i++)
{
C[i][]=;
for(int j=;j<=i;j++)
C[i][j]=C[i-][j-]+C[i-][j];
} while(scanf("%lld",&n)!=EOF)
{
if(n==)
{
printf("1 2\n");
continue;
}
ans=(LL)<<;
solve(,,,,);
printf("%lld %lld\n",n,ans);
}
}

UVA 1575 Factors的更多相关文章

  1. UVA 160 - Factors and Factorials

     Factors and Factorials  The factorial of a number N (written N!) is defined as the product of all t ...

  2. 紫书 习题 10-25 UVa 1575 (有重复元素的全排列+暴搜)

    我一开始以为有什么很牛逼的方法来做,然后一直没有思路 后来看了https://blog.csdn.net/zju2016/article/details/78562932的博客 竟然是暴搜?????? ...

  3. UVA 10699 Count the factors 题解

    Time limit 3000 ms OS Linux Write a program, that computes the number of different prime factors in ...

  4. uva 129 krypton factors ——yhx

     Krypton Factor  You have been employed by the organisers of a Super Krypton Factor Contest in which ...

  5. UVa 884 - Factorial Factors

    题目:输出n!中素数因数的个数. 分析:数论.这里使用欧拉筛法计算素数,在计算过程中求解就可以. 传统筛法是利用每一个素数,筛掉自己的整数倍: 欧拉筛法是利用当前计算出的全部素数,乘以当前数字筛数: ...

  6. UVa 11621 - Small Factors

    称号:发现没有比给定数量少n的.只要2,3一个因素的数字组成. 分析:数论.贪婪,分而治之. 用两个三分球,分别代表乘法2,和繁殖3队列,队列产生的数字,原来{1}. 然后.每取两个指针相应元素*2和 ...

  7. UVa 10299 - Relatives

    题目大意:Euler's Totient的应用. 几乎和UVa 10179 - Irreducable Basic Fractions一样,于是偷了个懒,直接用10179题的代码,结果WA了,感觉一样 ...

  8. UVA - 136 Ugly Numbers (有关set使用的一道题)

    Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequence1, 2, 3, 4, 5, 6, 8, 9, ...

  9. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

随机推荐

  1. PSP Daily——团队项目Alpha发布

    视频展示:优酷视频链接.文案如下 PSP Daily软件NABCD分析: 1) N (Need 需求) PSP Daily 解决了用户(软件工程课上学生)记录例行报告.写每周PSP表格和统计的需求.潜 ...

  2. Bate版本控制报告

    报告beta阶段2周中,项目的版本控制情况,不包括未在coding.net的部分. 包括不限于:check in (不是push)次数; 总词数为29次 check in log(时间.人员.mess ...

  3. 2018软工实践—Alpha冲刺(2)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作 协助前端界面的开发 搭建测试用服务器的环境 完成 ...

  4. MacOS下搭建python环境

    1. 安装须知 Mac OS自身其实已经带有Python,版本为2.7.X,这个Python主要用于支持系统文件和XCode,所以我们在安装新的Python版本时候最好不要影响这部分. 这里就会出现一 ...

  5. 软工实践-Alpha 冲刺 (7/10)

    队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 已经解决登录注册等基本功能的界面. 完成非功能的主界面制作 ...

  6. virtual judge 本地部署方案

    这是一种将自己的电脑当作服务器来部署一个vj的方法,我也是参考前辈们的做法稍作了改动,如果在服务器上部署的话需要在细节上稍作改动: 一.什么是Virtual Judge? vj的工作原理什么?  vj ...

  7. DB2 UDB V8.1 管理

    在DB2中有关实例(Instance), 数据库(Database),表空间(TableSpace),容器(Container)等概念: 在一个操作系统中,DB2数据服务可以同时运行多个实例(有别于O ...

  8. 在原有的基础之上,启用NAT模型

    # 给虚拟主机实例添加一个网关 route add default gw 192.168.23.1   # 在宿主机打开网卡间转发功能 echo 1 > /proc/sys/net/ipv4/i ...

  9. bzoj2386 [CEOI2011] Team

    题意 给你n个数,每个数的大小在1到n之间,要求把它们分成几组,每个数字的大小要小于等于它所在组中的数字总个数,问最多能分出多少组. 分析 首先把所有数字排序,比较显然的是最后一定存在一个最优解是按这 ...

  10. LeetCode 671. Second Minimum Node In a Binary Tree

    Given a non-empty special binary tree consisting of nodes with the non-negative value, where each no ...