C11线程管理:互斥锁
1、概述
锁类型
c11提供了跨平台的线程同步手段,用来保护多线程同时访问的共享数据。
std::mutex,最基本的 Mutex 类,独占的互斥量,不能递归使用。
std::time_mutex,带超时的独占互斥量,不能递归使用。
std::recursive_mutex,递归互斥量,不带超时功能。
std::recursive_timed_mutex,带超时的递归互斥量。
lock类型
std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。
std::unique_lock,与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。
锁函数
std::try_lock,尝试同时对多个互斥量上锁。
std::lock,可以同时对多个互斥量上锁。
std::unlock,解锁。
2、独占互斥量std::mutex
互斥量使用都很简单,接口用法也很简单。一般是通过lock()来阻塞线程,直到获取到互斥量为止。在获取互斥量完成之后,使用unlock()来解除互斥量的占用。lock()和unlock()必须成对出现。
std::mutex不允许拷贝构造,也不允许 move 拷贝,最初产生的 mutex 对象是处于 unlocked 状态的。
lock(),调用线程将锁住该互斥量。线程调用该函数会发生下面 3 种情况:(1). 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁。(2). 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住。(3). 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。
unlock(), 解锁,释放对互斥量的所有权。
try_lock(),尝试锁住互斥量,如果互斥量被其他线程占有,则当前线程也不会被阻塞。线程调用该函数也会出现下面 3 种情况,(1). 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock 释放互斥量。(2). 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉。(3). 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)。
- #include <iostream>
- #include <thread>
- #include <chrono>
- #include <mutex>
- std::mutex g_lock;
- void vFunc()
- {
- g_lock.lock();
- std::cout << "entered thread:" << std::this_thread::get_id() << std::endl;
- std::this_thread::sleep_for(std::chrono::seconds());
- std::cout << "leave thread:" << std::this_thread::get_id() << std::endl;
- g_lock.unlock();
- }
- int main()
- {
- std::thread t(vFunc);
- std::thread t1(vFunc);
- std::thread t2(vFunc);
- t.join();
- t1.join();
- t2.join();
- return ;
- }
- //输出结果
- entered thread:
- leave thread:
- entered thread:
- leave thread:
- entered thread:
- leave thread:
3、std::lock_guard和std::unique_lock
使用lock_guard和std::unique_lock可以简化lock/unlock的写法,同时也更安全,因为lock_guard使用了RAII技术,在构造分配资源,在析构释放资源,会在构造的时候自动锁定互斥量,在退出作用域之后进行析构自动解锁。所以不用担心没有解锁的情况,更加安全。
std::lock_guard与 Mutex RAII 相关,方便线程对互斥量上锁,std::unique_lock与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制,它可以自由的释放mutex,而std::lock_guard需要等生命周期结束才能释放。
- void vFunc()
- {
- std::lock_guard<std::mutex> locker(g_lock);//出作用域自动解锁
- std::cout << "entered thread:" << std::this_thread::get_id() << std::endl;
- std::this_thread::sleep_for(std::chrono::seconds());
- std::cout << "leave thread:" << std::this_thread::get_id() << std::endl;
- }
3、递归互斥锁std::recuisive_mutex
同一个线程不能多次获取同一个独占互斥锁,一个线程多次获取同一个互斥锁发生死锁。
- //std::mutex mutex;
- void funcA()
- {
- std::lock_guard<std::mutex> lock(mutex);
- //do something
- }
- void funcB()
- {
- std::lock_guard<std::mutex> lock(mutex);
- //do something
- }
- void funcC()
- {
- std::lock_guard<std::mutex> lock(mutex);
- funcA();
- funcB();
- }
- int main()
- {
- //发生死锁,funcC已经获取,无法释放,funcA无法获取
- funcC();
- return ;
- }
为了解决死锁的问题,C11有了递归锁std::recursive_mutex,递归锁允许一个线程多次获取该锁。
- //std::recursive_mutex mutex;
- void funcA()
- {
- std::lock_guard<std::recursive_mutex> lock(mutex);
- //do something
- }
- void funcB()
- {
- std::lock_guard<std::recursive_mutex> lock(mutex);
- //do something
- }
- void funcC()
- {
- std::lock_guard<std::recursive_mutex> lock(mutex);
- funcA();
- funcB();
- }
- int main()
- {
- //同一个线程可以多次获取同一互斥量,不会发生死锁
- funcC();
- return ;
- }
需要注意的是,尽量少用递归锁,原因如下:
允许递归互斥容易放纵复杂逻辑的产生,从而导致一些多线程同步引起的晦涩问题;
递归锁比非递归锁效率低;
递归锁虽然可以在同一线程多次获取,但是获取次数过多容易发生问题,引发std::system错误。
4、超时锁
std::time_mutex是超时的独占锁,std::recursive_timed_mutex是超时的递归锁,主要用于在获取锁时增加超时等待功能,设置一个等待获取锁的时间,超时后做其他的事情。超时锁多了两个获取锁的接口,try_lock_for和try_lock_until,这两个接口用来获取互斥量的超时时间。
try_lock_for 函数接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与 std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回 false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
try_lock_until函数则接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
- #include <iostream> // std::cout
- #include <chrono> // std::chrono::milliseconds
- #include <thread> // std::thread
- #include <mutex> // std::timed_mutex
- std::timed_mutex mtx;
- void fireworks() {
- // waiting to get a lock: each thread prints "-" every 200ms:
- while (!mtx.try_lock_for(std::chrono::milliseconds())) {
- std::cout << "-";
- }
- // got a lock! - wait for 1s, then this thread prints "*"
- std::this_thread::sleep_for(std::chrono::milliseconds());
- std::cout << "*\n";
- mtx.unlock();
- }
- int main()
- {
- std::thread threads[];
- // spawn 10 threads:
- for (int i = ; i<; ++i)
- threads[i] = std::thread(fireworks);
- for (auto& th : threads) th.join();
- return ;
- }
C11线程管理:互斥锁的更多相关文章
- JoinableQueue队列,线程,线程于进程的关系,使用线程,线程的特点,守护线程,线程的互斥锁,死锁问题,递归锁,信号量
1.JoinableQueue队列 JoinableQueue([maxsize]):这就像是一个Queue对象,但是队列允许项目的使用者通知生成者项目已经被成功处理.通知进程是使用共享的信号和条件变 ...
- C11线程管理:条件变量
1.简介 C11提供另外一种用于等待的同步机制,它可以阻塞一个或者多个线程,直到收到另外一个线程发出的通知或者超时,才会唤醒当前阻塞的线程.条件变量要和互斥量配合起来使用. condition_var ...
- Python进阶(3)_进程与线程中的lock(线程中互斥锁、递归锁、信号量、Event对象、队列queue)
1.同步锁 (Lock) 当全局资源(counter)被抢占的情况,问题产生的原因就是没有控制多个线程对同一资源的访问,对数据造成破坏,使得线程运行的结果不可预期.这种现象称为“线程不安全”.在开发过 ...
- linux线程及互斥锁
进程是资源管理的最小单元,线程是程序执行的最小单元.在操作系统的设计上,从进程演化出线程,最主要的目的就是更好的支持SMP以及减小(进程/线程)上下文切换开销. 就像进程有一个PID一样,每个线程也有 ...
- Linux 线程编程2.0——线程同步-互斥锁
当我们需要控制对共享资源的存取的时候,可以用一种简单的加锁的方法来控制.我们可以创建一个读/写程序,它们共用一个共享缓冲区,使用互斥锁来控制对缓冲区的存取. 函数 pthread_mutex_init ...
- day34 python学习 守护进程,线程,互斥锁,信号量,生产者消费者模型,
六 守护线程 无论是进程还是线程,都遵循:守护xxx会等待主xxx运行完毕后被销毁 需要强调的是:运行完毕并非终止运行 #1.对主进程来说,运行完毕指的是主进程代码运行完毕 #2.对主线程来说,运行完 ...
- Python中线程与互斥锁
了解之前我们先了解一下什么是多任务? 概念: 几个不同的事件在同时运行就是多任务, 这样的话, 我们有牵扯到了真的多任务, 假的多任务; 并行: 真的多任务, 通过电脑的核数来确定 并发: 假的多任务 ...
- 并发编程 - 线程 - 1.互斥锁/2.GIL解释器锁/3.死锁与递归锁/4.信号量/5.Event事件/6.定时器
1.互斥锁: 原理:将并行变成串行 精髓:局部串行,只针对共享数据修改 保护不同的数据就应该用不用的锁 from threading import Thread, Lock import time n ...
- Python 开启线程的2中方式,线程VS进程(守护线程、互斥锁)
知识点一: 进程:资源单位 线程:才是CPU的执行单位 进程的运行: 开一个进程就意味着开一个内存空间,存数据用,产生的数据往里面丢 线程的运行: 代码的运行过程就相当于运行了一个线程 辅助理解:一座 ...
随机推荐
- multipart/form-data post 方法提交表单,后台获取不到数据
这个和servlet容器有关系,比如tomcat等. 1.get方式 get方式提交的话,表单项都保存在http header中,格式是 http://localhost:8080/hello.do? ...
- 软工 · 第十一次作业 - Alpha 事后诸葛亮(团队)
软工 · 第十一次作业 - Alpha 事后诸葛亮(团队) 组长本次作业链接 现代软件工程 项目Postmortem 设想和目标 1.我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场 ...
- 我是一只IT小小鸟观后感
知道有这么一本写“码农”经历的书,是在大一下学期的第一堂职业生涯规划课上.也是抱着蛮看一看的心态在某宝上买了印刷版的开始抱着“啃”. 看了之后还是很有感触的,首先虽然现在我们是大学的软件学院中读书,但 ...
- Objective-C Json转Model(利用Runtime特性)
封装initWithNSDictionary:方法 该方法接收NSDictionary对象, 返回PersonModel对象. #pragma mark - 使用runtime将JSON转成Model ...
- http://deepdish.io/2015/04/28/creating-lmdb-in-python/
http://deepdish.io/2015/04/28/creating-lmdb-in-python/
- java使用匿名类直接new接口
翻看Vector代码的时候,看到这么一段. /** * Returns an enumeration of the components of this vector. The * returned ...
- PAT L1 - 056 猜数字
https://pintia.cn/problem-sets/994805046380707840/problems/994805074646122496 一群人坐在一起,每人猜一个 100 以内的数 ...
- JarvisOJ平台Web题部分writeup
PORT51 题目链接:http://web.jarvisoj.com:32770/ 这道题本来以为是访问服务器的51号端口,但是想想又不太对,应该是本地的51号端口访问服务器 想着用linux下的c ...
- 转 maven3常用命令、java项目搭建、web项目搭建详细图解
转自地址:http://blog.csdn.net/edward0830ly/article/details/8748986 ------------------------------maven3常 ...
- 【c】线性表
数据对象集:线性表是N(>=0)个元素构成的有序序列,a1,a2,a3.....a(N-1),aN,a(N+1) 线性表上的基本操作有: ⑴ 线性表初始化:Init_List(L)初始条件:表L ...