29-中国剩余定理CRT
中国剩余定理的具体描述是这样的:
给出你n个ai和mi,最后让求出x的最小值是多少。
中国剩余定理说明:假设整数m1, m2, ... , mn两两互质,则对任意的整数:a1, a2, ... , an,方程组有解,并且通解可以用如下方式构造得到:
- 设是整数m1, m2, ... , mn的乘积,并设是除了mi以外的n - 1个整数的乘积。
- 设为模的数论倒数:
- 方程组的通解形式为: 在模的意义下,方程组只有一个解:
使用中国剩余定理来求解上面的“物不知数”问题,便可以理解《孙子歌诀》中的数字含义。这里的线性同余方程组是:
三个模数m13, m25, m37的乘积是M105,对应的M135, M221, M315. 而可以计算出相应的数论倒数:t12, t21, t31. 所以《孙子歌诀》中的70,21和15其实是这个“物不知数”问题的基础解:
而将原方程组中的余数相应地乘到这三个基础解上,再加起来,其和就是原方程组的解:
这个和是233,实际上原方程组的通解公式为:
《孙子算经》中实际上给出了最小正整数解,也就是k-2时的解:x23.
- ///n个mi互质
- const LL maxn = 20;
- LL a[maxn], m[maxn], n;
- LL CRT(LL a[], LL m[], LL n)
- {
- LL M = 1;
- for (int i = 0; i < n; i++) M *= m[i];
- LL ret = 0;
- for (int i = 0; i < n; i++)
- {
- LL x, y;
- LL tm = M / m[i];
- ex_gcd(tm, m[i], x, y);
- ret = (ret + tm * x * a[i]) % M;
- }
- return (ret + M) % M;
- }
分割线
- ///n个mi不互质
- const LL maxn = 1000;
- LL a[maxn], m[maxn], n;
- LL CRT(LL a[], LL m[], LL n) {
- if (n == 1) {
- if (m[0] > a[0]) return a[0];
- else return -1;
- }
- LL x, y, d;
- for (int i = 1; i < n; i++) {
- if (m[i] <= a[i]) return -1;
- d = ex_gcd(m[0], m[i], x, y);
- if ((a[i] - a[0]) % d != 0) return -1; //不能整除则无解
- LL t = m[i] / d;
- x = ((a[i] - a[0]) / d * x % t + t) % t; //第0个与第i个模线性方程的特解
- a[0] = x * m[0] + a[0];
- m[0] = m[0] * m[i] / d;
- a[0] = (a[0] % m[0] + m[0]) % m[0];
- }
- return a[0];
- }
以上大部分内容来自wiki
29-中国剩余定理CRT的更多相关文章
- 「中国剩余定理CRT」学习笔记
设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r ...
- 中国剩余定理CRT(孙子定理)
中国剩余定理 给出以下的一元线性同余方程组: $\Large(s):\left\{\begin{aligned}x\equiv a_1\ (mod\ m_1)\\x\equiv a_2\ (mod\ ...
- 【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的 ...
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- 卢卡斯定理&&中国剩余定理
卢卡斯定理(模数较小,且是质数) 式子C(m,n)=C(m/p,n/p)*C(m%p,n%p)%p 至于证明(我也不会QAQ,只要记住公式也该就好了). 同时卢卡斯定理一般用于组合数取模上 1.首先当 ...
- gcd,扩展欧几里得,中国剩余定理
1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题: ...
- NOI 2018 屠龙勇士 (拓展中国剩余定理excrt+拓展欧几里得exgcd)
题目大意:略 真是一波三折的一道国赛题,先学了中国剩余定理,勉强看懂了模板然后写的这道题 把取出的宝剑攻击力设为T,可得Ti*x=ai(mod pi),这显然是ax=c(mod b)的形式 这部分用e ...
- POJ 1006:Biorhythms 中国剩余定理
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 121194 Accepted: 38157 Des ...
- RSA遇上中国剩余定理
1.Introduction 最近读论文刚好用到了这个,之前只是有耳闻,没有仔细研究过,这里就好好捋一下,会逐步完善 不过貌似CRT(中国剩余定理)的实现更容易被攻击 2. RSA: Overview ...
- 《孙子算经》之"物不知数"题:中国剩余定理
1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数. 如果 m ...
随机推荐
- linux文本处理命令 一
1,cut 主要的用途在于将同一行里面的数据进行分解 cut -d ‘分隔符’ -f ‘第几段’ 和-f同时使用 -c 字符区间 截取字符区间 2,grep cut 是在一行讯息当 ...
- 可复用的自定义Adapter
public abstract class MyAdapter<T> extends BaseAdapter { private ArrayList<T> mData; pri ...
- 【转】Jmeter使用之常用函数介绍
"_csvRead"函数 csvRead函数是从外部读取参数,csvRead函数可以从一个文件中读取多个参数. 下面具体讲一下如何使用csvread函数: 1.新建一个csv或者t ...
- PTA 1004 Counting Leaves (30)(30 分)(dfs或者bfs)
1004 Counting Leaves (30)(30 分) A family hierarchy is usually presented by a pedigree tree. Your job ...
- Intellij解决版本冲突时,merge界面各区块颜色区分
灰色:删除 蓝色:改变 绿色:新增 红色:冲突
- B. T-primes
/* PROBLEMSSUBMITSTATUSSTANDINGSCUSTOM TEST B. T-primes time limit per test2 seconds memory limit pe ...
- 利用百度API(JavaScript 版)实现在地图上绘制任一多边形,并判断给定经纬度是否在多边形范围内。以及两点间的测距功能
权声明:本文为博主原创文章,未经博主允许不得转载. 利用百度API(JavaScript 版)实现在地图上绘制任一多边形,并判断给定经纬度是否在多边形范围内.以及两点间的测距功能. 绘制多边形(蓝色) ...
- OD 实验(一) - 修改程序标题
需要修改的程序 把 I love fishc.com 修改为 hello world sch01ar 用 OD 打开程序 在程序入口处开始一直按 F8 运行程序,看看在哪里弹出对话框 运行到该地址的时 ...
- CentOS7.6安装JDK(Openjdk)
安装开始: 第一步: 使用yum源安装 OpenJDK,yum install -y java-1.8.0-openjdk 第二步: 查看安装版本,java -version 运行时发现错误汇总: 错 ...
- stm32通信概述
本文提到的内容有以下几个方面: 通信概述 串口通信 I2C通信 CAN通信 SPI通信 I2S通信 USB通信 其他通信 一.通信概述 按照数据传送方式分: 串行通信(一条数据线.适合远距离传输.控制 ...