F - Remember the Word

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Appoint description: 
System Crawler  (2015-03-07)

Description

 

Neal is very curious about combinatorial problems, and now here comes a problem about words. Knowing that Ray has a photographic memory and this may not trouble him, Neal gives it to Jiejie.

Since Jiejie can't remember numbers clearly, he just uses sticks to help himself. Allowing for Jiejie's only 20071027 sticks, he can only record the remainders of the numbers divided by total amount of sticks.

The problem is as follows: a word needs to be divided into small pieces in such a way that each piece is from some given set of words. Given a word and the set of words, Jiejie should calculate the number of ways the given word can be divided, using the words in the set.

Input

The input file contains multiple test cases. For each test case: the first line contains the given word whose length is no more than 300 000.

The second line contains an integer S<tex2html_verbatim_mark> , 1S4000<tex2html_verbatim_mark> .

Each of the following S<tex2html_verbatim_mark> lines contains one word from the set. Each word will be at most 100 characters long. There will be no two identical words and all letters in the words will be lowercase.

There is a blank line between consecutive test cases.

You should proceed to the end of file.

Output

For each test case, output the number, as described above, from the task description modulo 20071027.

Sample Input

  1. abcd
  2. 4
  3. a
  4. b
  5. cd
  6. ab

Sample Output

  1. Case 1: 2
  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cstring>
  4. using namespace std;
  5. int ch[][],val[];
  6. int sz,d[];
  7. int idx(char c)
  8. {
  9. return c-'a';
  10. }
  11. void insert(char *s,int v)
  12. {
  13. int u=,n=strlen(s);
  14. for(int i=;i<n;i++)
  15. {
  16. int c=idx(s[i]);
  17. if(!ch[u][c])
  18. {
  19. memset(ch[sz],,sizeof(ch[sz]));
  20. val[sz]=;
  21. ch[u][c]=sz++;
  22. }
  23. u=ch[u][c];
  24. }
  25. val[u]=v;
  26. }
  27. int main()
  28. {
  29. char s[],a[];
  30. int i,x,t=,j;
  31. while(~scanf("%s",s))
  32. {
  33. memset(d,,sizeof(d));
  34. sz=;
  35. memset(ch[],,sizeof(ch[]));
  36. scanf("%d",&x);
  37. for(i=;i<=x;i++)
  38. {
  39. scanf("%s",a);
  40. insert(a,-);
  41. }
  42. int root,i,j,k;
  43. int len=strlen(s);
  44. d[len]=;
  45. for(i=len-;i>=;i--)
  46. {
  47. root=;
  48. for(j=,k=i;k<len;j++,k++)
  49. {
  50. int c=idx(s[k]);
  51. if(ch[root][c]==)
  52. break;
  53. else if(val[ch[root][c]]==-)
  54. {
  55. d[i] += d[i+j+];
  56. if(d[i] >= ) d[i] %= ;
  57. }
  58. root=ch[root][c];
  59. }
  60.  
  61. }
  62. printf("Case %d: %d\n",t++,d[]%);
  63. }
  64. }

大白书 209 remember the word的更多相关文章

  1. 大白书中无向图的点双联通分量(BCC)模板的分析与理解

    对于一个无向图,如果任意两点至少存在两条点不重复(除起点和终点外无公共点)的路径,则这个图就是点双联通. 这个要求等价于任意两条边都存在于一个简单环(即同一个点不能在圈中出现两次)中,即内部无割点. ...

  2. DAG 上的动态规划(训练指南—大白书)

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.矩形嵌套 题目描述:       ...

  3. UVALive 3942 Remember the Word

    题意:给出一个由S个不同单词组成的字典和一个长字符串.把这个字符串分解成若干个单词的连接(单词可以重复 使用),有多少种方法? Sample Input abcd 4 a b cd ab Sample ...

  4. la3523 白书例题 圆桌骑士 双联通分量+二分图

    具体题解看大白书P316 #include <iostream> #include <algorithm> #include <vector> #include & ...

  5. C#操作Word的超详细总结 ---转载

    C#操作Word的超详细总结 本文中用C#来操作Word,包括: 创建Word: 插入文字,选择文字,编辑文字的字号.粗细.颜色.下划线等: 设置段落的首行缩进.行距: 设置页面页边距和纸张大小: 设 ...

  6. Uva12206 Stammering Aliens 后缀数组&&Hash

    Dr. Ellie Arroway has established contact with an extraterrestrial civilization. However, all effort ...

  7. 【JSOI2007】麻将 bzoj 1028

    Description 麻 将是中国传统的娱乐工具之一.麻将牌的牌可以分为字牌(共有东.南.西.北.中.发.白七种)和序数牌(分为条子.饼子.万子三种花色,每种花色各有一到 九的九种牌),每种牌各四张 ...

  8. poj2284 欧拉公式

    题意:给出一图形,求该图形把平面分成了几部分 欧拉公式: http://blog.csdn.net/wangxiaojun911/article/details/4586550 对于二维平面上的情况. ...

  9. UVA11426 欧拉函数

    大白书P125 #include <iostream> #include <cstring> using namespace std; #define MMX 4000010 ...

随机推荐

  1. xcode编译运行报错纪录(持续更新)

    ---恢复内容开始--- 1. Undefined symbols for architecture i386: "_deflate", referenced from: -[NS ...

  2. jeesite 经常出现java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderL解决思路

    本来jeesite是用的maven,但是我开发的项目用这个框架没用maven, 经常报这个错,我能用的办法就是将springmvc—web.jar包删掉,然后重新添加

  3. ci 用本身 email 类发 email

    //比如 在控制器用 email 方法发送邮件 //用126的smtp 发送,示例邮件为 myemail@126.com 密码为 password public function email() { ...

  4. mac 生成支付宝的rsa公钥和私钥 php版本

    openssl genrsa -out rsa_private_key.pem 1024 公钥 openssl rsa -in rsa_private_key.pem -pubout -out rsa ...

  5. php会话控制cookie/session

    设置cookie PHP设置Cookie最常用的方法就是使用setcookie函数,setcookie具有7个可选参数,我们常用到的为前5个: name( Cookie名)可以通过$_COOKIE[' ...

  6. $_REQUEST变量数组header()函数

    $_SERVER 包含http信息头,路径和服务器端的一些信息,没发送一次HTTP请求,就会创建一个$_SERVER数组Array ( [HTTP_HOST] => localhost [HTT ...

  7. 限制apache错误日志大小

    ①配置错误日志 在http.conf配置: ErrorLog "| /opt/lampp/bin/rotatelogs /opt/lampp/logs/%Y_%m_%d_error_log  ...

  8. postgres 约束 多个条件 联合 约束

    ADD CONSTRAINT xxx CHECK ( (col1 = 0.0) = (col2 IS NOT NULL)); ## 相当于check (true = ture)

  9. NodeJS加MongoDB应用入门

    OS:Windows 7 1.下载安装MongoDB:http://www.mongodb.org/downloads 2.下载安装NodeJS:http://nodejs.org/ 3.运行Mong ...

  10. WPF DataGrid 自动生成行号的方法(通过修改RowHeaderTemplate的方式)

    WPF中的DataGrid自动生成行号的方法有很多,这里记录了一种通过修改 RowHeaderTemplate的方式来生成行号: 方法一: xaml界面: <Window ... xmlns:l ...