数学(数论)BZOJ 3309:DZY Loves Math
Description
对于正整数n,定义f(n)为n所含质因子的最大幂指数。例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0。
给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b)。
Input
第一行一个数T,表示询问数。
接下来T行,每行两个数a,b,表示一个询问。
Output
对于每一个询问,输出一行一个非负整数作为回答。
Sample Input
10000
7558588 9653114
6514903 4451211
7425644 1189442
6335198 4957
Sample Output
14225956593420
4332838845846
15400094813
HINT
【数据规模】
T<=10000
1<=a,b<=10^7
莫比乌斯反演得到:
(盗图)
然后有类似于yy的GCD的做法,分块加速,复杂度变O(√n)
问题就是如何快速预处理出后面的式子,设其为g(x),这时研究g函数性质,g(x)的取值有哪些规律呢?
将x分解质因数,x=p1a1*p2a2*p3a3*……*pnan,函数即是将x分解成两个集合,求值再求和。
1.假设a不全是同一个值,那么那个较小的素数,可以对每个情况属于两个集合使得其值互为相反数,所以值为0。
2.a值全相等时,易得g(x)=(-1)a-1,根据欧拉线性筛的性质,每个数被最小的素因子枚举到,可以维护两个值,当前的a值,去掉当前最小的素因子后的数。
然后就可以
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=;
int g[N],nxt[N],mem[N];
int prime[N],cnt;
bool check[N]; void Prepare(){
for(int i=;i<N;i++){
if(!check[i]){
prime[++cnt]=i;
g[i]=nxt[i]=mem[i]=;
}
for(int j=;j<=cnt;j++){
if(i*prime[j]>=N)break;
check[i*prime[j]]=true;
if(i%prime[j]==){
nxt[i*prime[j]]=nxt[i];
mem[i*prime[j]]=mem[i]+;
if(nxt[i]==)g[i*prime[j]]=;
else if(mem[nxt[i]]==mem[i]+)
g[i*prime[j]]=-g[nxt[i]];
else g[i*prime[j]]=;
break;
}
else{
nxt[i*prime[j]]=i;
mem[i*prime[j]]=;
g[i*prime[j]]=(mem[i]==)?-g[i]:;
}
}
}
for(int i=;i<N;i++)
g[i]+=g[i-];
}
int T,a,b;
long long ans;
int main(){
Prepare();
scanf("%d",&T);
while(T--){
scanf("%d%d",&a,&b);
if(a>b)swap(a,b);ans=;
for(int i=,p=;i<=a;i=p+){
p=min(a/(a/i),b/(b/i));
ans+=1ll*(g[p]-g[i-])*(a/i)*(b/i);
}
printf("%lld\n",ans);
}
return ;
}
维护了。
数学(数论)BZOJ 3309:DZY Loves Math的更多相关文章
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
- BZOJ 3309: DZY Loves Math
3309: DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 761 Solved: 401[Submit][Status ...
- bzoj 3309 DZY Loves Math 莫比乌斯反演
DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1303 Solved: 819[Submit][Status][Dis ...
- bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...
- bzoj 3309 DZY Loves Math——反演+线性筛
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 像这种数据范围,一般是线性预处理,每个询问 sqrt (数论分块)做. 先反演一番.然 ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
- BZOJ 3309 DZY Loves Math ——莫比乌斯反演
枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...
- BZOJ 3309: DZY Loves Math 莫比乌斯反演+打表
有一个神奇的技巧——打表 code: #include <bits/stdc++.h> #define N 10000007 #define ll long long #define se ...
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
随机推荐
- iOS谋职之OC面试题
iOS谋职之OC面试题 iOS求职之OC面试题 IOS求职之OC面试题 1.Objective-C的类可以多重继承么?可以采用多个协议么? 答:不可以多重继承,可以采用多个协议. 2.#import和 ...
- 初步认识 Web Service
Web Service初步认识 Web Service:不是框架,不是一种技术,而是一种跨平台,跨语言的规范. 作用:异构平台之间的交互,解决了不同平台,不同语言所编写的应用之间的相互调用.(远 ...
- requirejs源码
require.js /** vim: et:ts=4:sw=4:sts=4 * @license RequireJS 2.1.11 Copyright (c) 2010-2014, The Dojo ...
- 九度OJ 1435 迷瘴
题目地址:http://ac.jobdu.com/problem.php?pid=1435 题目描述: 通过悬崖的yifenfei,又面临着幽谷的考验—— 幽谷周围瘴气弥漫,静的可怕,隐约可见地上堆满 ...
- SQL Server系统视图 [不定期更新]
1.sys.objects:在数据库中创建的每个用户定义的架构作用域内的对象(如表.视图.约束.默认值.日志.规则存储过程等,但不包括DDL触发器)在该表中均对应一行. 列名 说明 name 对象名. ...
- cenots 下的 lamp(备份与恢复)
用 putty连接数据库: mysql -uroot -p密码 create database yourdb DEFAULT CHARACTER SET utf8 COLLATE utf8_chine ...
- 【转】JavaScript闭包
摘自:JavaScript作用域闭包简述 使用外部变量的函数就是闭包,闭包可以给我们带来一些便利,就是可以在高等级的作用域使用低等级作用域中的变量: 例: var data = []; fun ...
- php5.3 不支持 session_register() 此函数已启用的解决方法
php从5.2.x升级到5.3.2.出来问题了.有些原来能用的程序报错了,Deprecated: Function session_register() is deprecated php从5.2.x ...
- PHP文章关键词相似短尾长尾内链替换方法介绍
对于互联网程序来说,对文字正文内容做关键词内链优化是常态的工作之一.一方面有人手动来处理关键词内链,这个效率太低:一方面通过程序自动添加内链,这样子也省事而且便于管理: 今天我们探讨的就是给自动给文章 ...
- $_REQUEST变量数组header()函数
$_SERVER 包含http信息头,路径和服务器端的一些信息,没发送一次HTTP请求,就会创建一个$_SERVER数组Array ( [HTTP_HOST] => localhost [HTT ...