http://poj.org/problem?id=2486

典型的回溯题目:特别是状态方程用三维的来标记是否要走回路。

题意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值
思路:

树形dp,比较经典的一个树形dp。首先很容易就可以想到用dp[root][k]表示以root为根的子树中最多走k时所能获得的最多苹果数,接下去我们很习惯地会想到将k步在root的所有子结点中分配,也就是进行一次背包,就可以得出此时状态的最优解了,但是这里还有一个问题,那就是在进行背包的时候,对于某个孩子son走完之后是否回到根结点会对后面是否还能分配有影响,为了解决这个问题,我们只需要在状态中增加一维就可以了,用dp[root][k][0]表示在子树root中最多走k步,最后还是回到root处的最大值,dp[root][k][1]表示在子树root中最多走k步,最后不回到root处的最大值。由此就可以得出状态转移方程了:

Apple Tree
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6836   Accepted: 2268

Description

Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to an apple tree. There are N nodes in the tree. Each node has an amount of apples. Wshxzt starts her happy trip at one node. She can eat up all the apples in the nodes she reaches. HX is a kind guy. He knows that eating too many can make the lovely girl become fat. So he doesn’t allow Wshxzt to go more than K steps in the tree. It costs one step when she goes from one node to another adjacent node. Wshxzt likes apple very much. So she wants to eat as many as she can. Can you tell how many apples she can eat in at most K steps.

Input

There are several test cases in the input  Each test case contains three parts.  The first part is two numbers N K, whose meanings we have talked about just now. We denote the nodes by 1 2 ... N. Since it is a tree, each node can reach any other in only one route. (1<=N<=100, 0<=K<=200)  The second part contains N integers (All integers are nonnegative and not bigger than 1000). The ith number is the amount of apples in Node i.  The third part contains N-1 line. There are two numbers A,B in each line, meaning that Node A and Node B are adjacent.  Input will be ended by the end of file. 
Note: Wshxzt starts at Node 1.

Output

For each test case, output the maximal numbers of apples Wshxzt can eat at a line.

Sample Input

2 1
0 11
1 2
3 2
0 1 2
1 2
1 3

Sample Output

11
2

dp[root][j][0] = MAX (dp[root][j][0] , dp[root][j-k][0] + dp[son][k-2][0]);//从s出发,要回到s,需要多走两步s-t,t-s,分配给t子树k步,其他子树j-k步,都返回

dp[root][j]][1] = MAX(  dp[root][j][1] , dp[root][j-k][0] + dp[son][k-1][1]) ;//先遍历s的其他子树,回到s,遍历t子树,在当前子树t不返回,多走一步

dp[root][j][1] = MAX (dp[root][j][1] , dp[root][j-k][1] + dp[son][k-2][0]);//不回到s(去s的其他子树),在t子树返回,同样有多出两步

//(1)dp[i][j+2][0] = max(dp[i][j+2][0], dp[i][j-k][0]+dp[son][k][0]);
//(2)dp[i][j+1][1] = max(dp[i][j+1][1], dp[i][j-k][0]+dp[son][k][1]); 人留在i的子节点son的子树中
//(3)dp[i][j+2][1] = max(dp[i][j+2][1], dp[i][j-k][1]+dp[son][k][0]); 人留在不是son的i的子节点的子树中
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int dp[300][300][3],head[300],vis[300],w[300];
int len,n,k;
struct node
{
int now,next;
} tree[505];
int max(int x,int y)
{
if(x>y)
return x;
else
return y;
}
void add(int x,int y)
{ tree[len].now = y;
tree[len].next = head[x];
head[x] = len++;
}
void dfs(int root,int mark)
{
int j,son,t,i; for(i=0;i<=k;i++)
dp[root][i][0] = dp[root][i][1] = w[root];
for(i=head[root];i!=-1;i=tree[i].next)
{
printf("i=%d\n",i);
son = tree[i].now;
if(son == mark)//已经加了,就不要加,不然就死循环。
continue;
dfs(son,root);
for(j = k; j>=1; j--)
{
for(t = 1; t<=j; t++)
{
dp[root][j][1]=max(dp[root][j][1],dp[root][j-t][1]+dp[son][t-2][1]);
dp[root][j][0]=max(dp[root][j][0],dp[root][j-t][1]+dp[son][t-1][0]);
dp[root][j][0]=max(dp[root][j][0],dp[root][j-t][0]+dp[son][t-2][1]); }
} }
}
int main()
{
int i,a,b,j;
while(~scanf("%d%d",&n,&k))
{
len=0;
memset(head,-1,sizeof(head));
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
memset(w,0,sizeof(w));
for(i = 1; i<=n; i++)
{
scanf("%d",&w[i]); }
for(i=1;i<n;i++)
{
cin>>a>>b;
add(a,b);
add(b,a);
}
dfs(1,0);
printf("%d\n",max(dp[1][k][0],dp[1][k][1]));
}
return 0;
}

poj 2408 Apple Tree的更多相关文章

  1. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  2. POJ - 3321 Apple Tree (线段树 + 建树 + 思维转换)

    id=10486" target="_blank" style="color:blue; text-decoration:none">POJ - ...

  3. POJ 2486 Apple Tree

    好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...

  4. poj 3321:Apple Tree(树状数组,提高题)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 5629 Descr ...

  5. poj 3321 Apple Tree dfs序+线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K       Description There is an apple tree outsid ...

  6. POJ 3321 Apple Tree(DFS序+线段树单点修改区间查询)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25904   Accepted: 7682 Descr ...

  7. poj 2486 Apple Tree(树形DP 状态方程有点难想)

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9808   Accepted: 3260 Descri ...

  8. POJ 3321 Apple Tree 【树状数组+建树】

    题目链接:http://poj.org/problem?id=3321 Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submiss ...

  9. #5 DIV2 A POJ 3321 Apple Tree 摘苹果 构建线段树

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25232   Accepted: 7503 Descr ...

随机推荐

  1. 【python之路8】python基本数据类型(二)

    基本数据类型 4.列表(list) 创建列表 name_list = ['zhao','qian','sun','li'] 基本操作 索引 print(name_list[0]) #返回zhao pr ...

  2. php+正则将字符串中的字母数字和中文分割

    原文出处 如果一段字符串中出现字母数字还有中文混排的情况,怎么才能将他们区分开呢,经过一番思索,得到了如下代码,分享给大家 如:$str="php如何将字 符串中322的字母数字sf f45 ...

  3. PetaPoco 增删改查

    1 查询单行 DBInstance.DB.SingleOrDefault<CompanyInfo11>(id); /// <summary> /// 根据id获取公司信息 // ...

  4. C#使用Process类调用外部程序(转)

    在程序开发中,一个程序经常需要去调用其他的程序,C#中Process类正好提供了这样的功能.它提供对本地和远程进程的访问并使您能够启动和停止本地系统进程.一.启动进程实例 Process myProc ...

  5. HTML5 FileReader读取Blob对象API详解

    使用FileReader对象,web应用程序可以异步的读取存储在用户计算机上的文件(或者原始数据缓冲)内容,可以使用File对象或者Blob对象来指定所要读取的文件或数据.其中File对象可以是来自用 ...

  6. bootstrap 下的 validation插件

    http://reactiveraven.github.io/jqBootstrapValidation/

  7. [转帖]SD卡&FLASH&USB

    来源:http://www.cypress.com Cypress官网,了解任何芯片都应该从它的官网入手,资料一定是最多最原始的,像Ronnie学习. Cypress’s EZ-USB® FX2LP™ ...

  8. block 浅析

    最近讲了一个关于block的例子 block 可以作为一个参数 进行传递 需要注意的地方是 :block 虽然作为一个参数 但是在函数方法执行的时候 block 是不会在定义它的地方调用 除非你在后边 ...

  9. WARN [main] conf.HiveConf (HiveConf.java:initialize(1488)) - DEPRECATED

    问题描述:hive 关于告警问题的解决:WARN  [main] conf.HiveConf (HiveConf.java:initialize(1488)) - DEPRECATED: Config ...

  10. U盘美化(更换U盘logo和页面背景软件)

    U盘内新建txt文本后,输入 [autorun] ICON=ooopic_1459309050.ico 保存的文件名包括后缀更改为autorun.inf 必须为icon图标