【题意】

  假设有 n 根柱子, 现要按下述规则在这 n 根柱子中依次放入编号为 1, 2, 3, ¼的球。
( 1)每次只能在某根柱子的最上面放球。
( 2)在同一根柱子中,任何 2 个相邻球的编号之和为完全平方数。
试设计一个算法, 计算出在 n 根柱子上最多能放多少个球。 例如,在 4 根柱子上最多可
放 11 个球。

输入文件示例
input.txt
4

输出文件示例

output.txt

11
1 8
2 7 9
3 6 10
4 5 11

【分析】

  二分答案。然后连边u->v 表示v可以放在u后面,然后就是一个有向图的最小路径覆盖(点不能重复)

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 4100
#define INF 0xfffffff struct node
{
int x,y,f,o,next;
}t[Maxn*];int len;
int first[Maxn]; int mymin(int x,int y) {return x<y?x:y;} void ins(int x,int y,int f)
{
t[++len].x=x;t[len].y=y;t[len].f=f;
t[len].next=first[x];first[x]=len;t[len].o=len+;
t[++len].x=y;t[len].y=x;t[len].f=;
t[len].next=first[y];first[y]=len;t[len].o=len-;
} int st,ed;
queue<int > q;
int dis[Maxn];
bool bfs()
{
while(!q.empty()) q.pop();
memset(dis,-,sizeof(dis));
q.push(st);dis[st]=;
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==-)
{
dis[y]=dis[x]+;
q.push(y);
}
}
q.pop();
}
if(dis[ed]==-) return ;
return ;
} int ffind(int x,int flow)
{
if(x==ed) return flow;
int now=;
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==dis[x]+)
{
int a=ffind(y,mymin(flow-now,t[i].f));
t[i].f-=a;
t[t[i].o].f+=a;
now+=a;
}
if(now==flow) break;
}
if(now==) dis[x]=-;
return now;
} void output()
{
for(int i=;i<=len;i+=)
printf("%d->%d %d\n",t[i].x,t[i].y,t[i].f);
} int max_flow()
{
int ans=;
while(bfs())
{
ans+=ffind(st,INF);
// printf("--%d\n",ans);
// output();
}
return ans;
} int n;
bool check(int x)
{
len=;
memset(first,,sizeof(first));
for(int i=;i<=x;i++)
for(int j=i+;j<=x;j++)
{
int yy=i+j,y=(int)sqrt((double)yy);
if(y*y==yy)
{
ins(i,j+x,);
}
}
st=*x+;ed=st+;
for(int i=;i<=x;i++) ins(st,i,);
for(int i=;i<=x;i++) ins(i+x,ed,);
// if(x==10) output();
int y=max_flow();
return x-y<=n;
} int nt[Maxn];
bool vis[Maxn]; int main()
{
scanf("%d",&n);
int l=,r=;
while(l<r)
{
int mid=(l+r+)>>;
if(check(mid)) l=mid;
else r=mid-;
}
printf("%d\n",l);
check(l);
// output();
memset(nt,,sizeof(nt));
memset(vis,,sizeof(vis));
for(int i=;i<=len;i+=) if(t[i].x!=st&&t[i].y!=ed&&t[i].f==)
nt[t[i].x]=t[i].y-l,vis[t[i].y-l]=;
for(int i=;i<=l;i++) if(vis[i])
{
int x=i;
while(x)
{
printf("%d ",x);
x=nt[x];
}
printf("\n");
}
return ;
}

缓慢飘过~~

2016-11-04 10:45:42

【网络流24题】No.4 魔术球问题 (二分+最小路径覆盖)的更多相关文章

  1. LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖

    6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

  2. cogs_396_魔术球问题_(最小路径覆盖+二分图匹配,网络流24题#4)

    描述 http://cojs.tk/cogs/problem/problem.php?pid=396 连续从1开始编号的球,按照顺寻一个个放在n个柱子上,\(i\)放在\(j\)上面的必要条件是\(i ...

  3. 【PowerOJ1736&网络流24题】飞行员配对方案问题(最小割)

    题意: n<=100,要求输出方案 思路:准备把没刷的24题从头搞一遍 输出方案的话就在增广的时候记一下另一端的编号就好 #include<bits/stdc++.h> using ...

  4. 【PowerOJ1744&网络流24题】方格取数问题(最小割)

    题意: n,m<=30 思路: [问题分析] 二分图点权最大独立集,转化为最小割模型,从而用最大流解决. [建模方法] 首先把棋盘黑白染色,使相邻格子颜色不同,所有黑色格子看做二分图X集合中顶点 ...

  5. 【网络流24题】No.16 数字梯形问题 (不相交路径 最大费用流)

    [题意] 给定一个由 n 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动, 形成一条从梯形的顶至底的路径.规则 1: ...

  6. 【PowerOJ1737&网络流24题】太空飞行计划问题(最小割)

    题意: 思路: #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned in ...

  7. 【线性规划与网络流 24题】已完成(3道题因为某些奇怪的原因被抛弃了QAQ)

    写在前面:SDOI2016 Round1滚粗后蒟蒻开始做网络流来自我拯救(2016-04-11再过几天就要考先修课,现在做网络流24题貌似没什么用←退役节奏) 做的题目将附上日期,见证我龟速刷题. 1 ...

  8. LOJ6002 - 「网络流 24 题」最小路径覆盖

    原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...

  9. LOJ6003 - 「网络流 24 题」魔术球

    原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...

随机推荐

  1. Eclipse错误

    1.java compiler level does not match the version of the installed java project facet 解决:http://blog. ...

  2. 第七篇:web之前端之ajax

    前端之ajax   前端之ajax 本节内容 ajax介绍 原生js实现ajax jquery实现ajax json 跨域请求 1. ajax介绍 AJAX(Asynchronous Javascri ...

  3. Yii框架页面运行流程

    Yii框架页面运行流程 CComponent | CModel | CActiveRecord.CFormModel(所有模型的父类) | 表名.php(模型) | 入口文件------------- ...

  4. html调用applet

    1.相同目录下 <applet code="*.class" width=250 height=50> </applet> 指定applet类名称,appl ...

  5. Oracle 11g gateways(透明网关)配置

    配置要点主要有三点: 1.%GATEWAYS_HOME%(透明网关安装目录)\dg4msql\admin\initdg4msql.ora 内容: HS_FDS_CONNECT_INFO=localho ...

  6. iOS 获取当前媒体音量

    #import <AVFoundation/AVAudioSession.h> AVAudioSession *audioSession = [AVAudioSession sharedI ...

  7. html-----013----实体字符/HTML URL 编码

    <!DOCTYPE> 声明 版本 年份 HTML 1991 HTML+ 1993 HTML 2.0 1995 HTML 3.2 1997 HTML 4.01 1999 XHTML 1.0 ...

  8. LA 3708 Graveyard(推理 参考系 中位数)

    Graveyard Programming contests became so popular in the year 2397 that the governor of New Earck -- ...

  9. python 在调用时计算默认值

    大家都知道python的默认值是在函数定义时计算出来的, 也就是说默认值只会计算一次, 之后函数调用时, 如果参数没有给出,同一个值会赋值给变量, 这会导致, 如果我们想要一个list默认值, 新手通 ...

  10. yum 安装 依赖报错

    今天使用yum安装的时候 报错: Error: Multilib version problems found. This often means that the root cause 应该是yum ...