【网络流24题】No.4 魔术球问题 (二分+最小路径覆盖)
【题意】
假设有 n 根柱子, 现要按下述规则在这 n 根柱子中依次放入编号为 1, 2, 3, ¼的球。
( 1)每次只能在某根柱子的最上面放球。
( 2)在同一根柱子中,任何 2 个相邻球的编号之和为完全平方数。
试设计一个算法, 计算出在 n 根柱子上最多能放多少个球。 例如,在 4 根柱子上最多可
放 11 个球。
输入文件示例
input.txt
4输出文件示例
output.txt
11
1 8
2 7 9
3 6 10
4 5 11
【分析】
二分答案。然后连边u->v 表示v可以放在u后面,然后就是一个有向图的最小路径覆盖(点不能重复)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 4100
#define INF 0xfffffff struct node
{
int x,y,f,o,next;
}t[Maxn*];int len;
int first[Maxn]; int mymin(int x,int y) {return x<y?x:y;} void ins(int x,int y,int f)
{
t[++len].x=x;t[len].y=y;t[len].f=f;
t[len].next=first[x];first[x]=len;t[len].o=len+;
t[++len].x=y;t[len].y=x;t[len].f=;
t[len].next=first[y];first[y]=len;t[len].o=len-;
} int st,ed;
queue<int > q;
int dis[Maxn];
bool bfs()
{
while(!q.empty()) q.pop();
memset(dis,-,sizeof(dis));
q.push(st);dis[st]=;
while(!q.empty())
{
int x=q.front();
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==-)
{
dis[y]=dis[x]+;
q.push(y);
}
}
q.pop();
}
if(dis[ed]==-) return ;
return ;
} int ffind(int x,int flow)
{
if(x==ed) return flow;
int now=;
for(int i=first[x];i;i=t[i].next) if(t[i].f>)
{
int y=t[i].y;
if(dis[y]==dis[x]+)
{
int a=ffind(y,mymin(flow-now,t[i].f));
t[i].f-=a;
t[t[i].o].f+=a;
now+=a;
}
if(now==flow) break;
}
if(now==) dis[x]=-;
return now;
} void output()
{
for(int i=;i<=len;i+=)
printf("%d->%d %d\n",t[i].x,t[i].y,t[i].f);
} int max_flow()
{
int ans=;
while(bfs())
{
ans+=ffind(st,INF);
// printf("--%d\n",ans);
// output();
}
return ans;
} int n;
bool check(int x)
{
len=;
memset(first,,sizeof(first));
for(int i=;i<=x;i++)
for(int j=i+;j<=x;j++)
{
int yy=i+j,y=(int)sqrt((double)yy);
if(y*y==yy)
{
ins(i,j+x,);
}
}
st=*x+;ed=st+;
for(int i=;i<=x;i++) ins(st,i,);
for(int i=;i<=x;i++) ins(i+x,ed,);
// if(x==10) output();
int y=max_flow();
return x-y<=n;
} int nt[Maxn];
bool vis[Maxn]; int main()
{
scanf("%d",&n);
int l=,r=;
while(l<r)
{
int mid=(l+r+)>>;
if(check(mid)) l=mid;
else r=mid-;
}
printf("%d\n",l);
check(l);
// output();
memset(nt,,sizeof(nt));
memset(vis,,sizeof(vis));
for(int i=;i<=len;i+=) if(t[i].x!=st&&t[i].y!=ed&&t[i].f==)
nt[t[i].x]=t[i].y-l,vis[t[i].y-l]=;
for(int i=;i<=l;i++) if(vis[i])
{
int x=i;
while(x)
{
printf("%d ",x);
x=nt[x];
}
printf("\n");
}
return ;
}
缓慢飘过~~
2016-11-04 10:45:42
【网络流24题】No.4 魔术球问题 (二分+最小路径覆盖)的更多相关文章
- LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖
6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- cogs_396_魔术球问题_(最小路径覆盖+二分图匹配,网络流24题#4)
描述 http://cojs.tk/cogs/problem/problem.php?pid=396 连续从1开始编号的球,按照顺寻一个个放在n个柱子上,\(i\)放在\(j\)上面的必要条件是\(i ...
- 【PowerOJ1736&网络流24题】飞行员配对方案问题(最小割)
题意: n<=100,要求输出方案 思路:准备把没刷的24题从头搞一遍 输出方案的话就在增广的时候记一下另一端的编号就好 #include<bits/stdc++.h> using ...
- 【PowerOJ1744&网络流24题】方格取数问题(最小割)
题意: n,m<=30 思路: [问题分析] 二分图点权最大独立集,转化为最小割模型,从而用最大流解决. [建模方法] 首先把棋盘黑白染色,使相邻格子颜色不同,所有黑色格子看做二分图X集合中顶点 ...
- 【网络流24题】No.16 数字梯形问题 (不相交路径 最大费用流)
[题意] 给定一个由 n 行数字组成的数字梯形如下图所示. 梯形的第一行有 m 个数字.从梯形的顶部的 m 个数字开始,在每个数字处可以沿左下或右下方向移动, 形成一条从梯形的顶至底的路径.规则 1: ...
- 【PowerOJ1737&网络流24题】太空飞行计划问题(最小割)
题意: 思路: #include<bits/stdc++.h> using namespace std; typedef long long ll; typedef unsigned in ...
- 【线性规划与网络流 24题】已完成(3道题因为某些奇怪的原因被抛弃了QAQ)
写在前面:SDOI2016 Round1滚粗后蒟蒻开始做网络流来自我拯救(2016-04-11再过几天就要考先修课,现在做网络流24题貌似没什么用←退役节奏) 做的题目将附上日期,见证我龟速刷题. 1 ...
- LOJ6002 - 「网络流 24 题」最小路径覆盖
原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...
- LOJ6003 - 「网络流 24 题」魔术球
原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...
随机推荐
- Eclipse错误
1.java compiler level does not match the version of the installed java project facet 解决:http://blog. ...
- 第七篇:web之前端之ajax
前端之ajax 前端之ajax 本节内容 ajax介绍 原生js实现ajax jquery实现ajax json 跨域请求 1. ajax介绍 AJAX(Asynchronous Javascri ...
- Yii框架页面运行流程
Yii框架页面运行流程 CComponent | CModel | CActiveRecord.CFormModel(所有模型的父类) | 表名.php(模型) | 入口文件------------- ...
- html调用applet
1.相同目录下 <applet code="*.class" width=250 height=50> </applet> 指定applet类名称,appl ...
- Oracle 11g gateways(透明网关)配置
配置要点主要有三点: 1.%GATEWAYS_HOME%(透明网关安装目录)\dg4msql\admin\initdg4msql.ora 内容: HS_FDS_CONNECT_INFO=localho ...
- iOS 获取当前媒体音量
#import <AVFoundation/AVAudioSession.h> AVAudioSession *audioSession = [AVAudioSession sharedI ...
- html-----013----实体字符/HTML URL 编码
<!DOCTYPE> 声明 版本 年份 HTML 1991 HTML+ 1993 HTML 2.0 1995 HTML 3.2 1997 HTML 4.01 1999 XHTML 1.0 ...
- LA 3708 Graveyard(推理 参考系 中位数)
Graveyard Programming contests became so popular in the year 2397 that the governor of New Earck -- ...
- python 在调用时计算默认值
大家都知道python的默认值是在函数定义时计算出来的, 也就是说默认值只会计算一次, 之后函数调用时, 如果参数没有给出,同一个值会赋值给变量, 这会导致, 如果我们想要一个list默认值, 新手通 ...
- yum 安装 依赖报错
今天使用yum安装的时候 报错: Error: Multilib version problems found. This often means that the root cause 应该是yum ...